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Abstract—Models of integrated services data networks with moving customers (e.g., mobiles with
calls in progress) and level dependent spatial Markov-additive processes of arrivals are considered. It is
assumed that waiting is not allowed and, accordingly, two types of service models are examined: with
infinite number of servers and loss models with finite number of servers. In general, arrivals can be of
different types. In all models, service times have arbitrary distribution functions. Basic characteristics
of interest are marginal and joint distributions of numbers of customers being served in disjoint spatial
subsets. For this characteristics, we derive differential equations and, in some particular cases, obtain
their explicit expressions.
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1. INTRODUCTION

The modelling of wireless (mobile) communication networks has been restricted so far to the case where
customers represent occurrences with invariant local positions. One exception (among few) is the work of
Baccelli, Klein, Lebourges, and Zuyev [1, 2] using homogeneous spatial Poisson (point and line) processes
and marked Poisson processes in order to reproduce not only static characteristics (the stationary network
and the road system) but also dynamics of customers—i.e., the variation of the distribution of points (mobile
users) over time after their occurrence (traffic model). The selection of initial customer locations, however,
takes place in form of a “static” sampling from a point process. It would be more helpful, no doubt, to speak
of “random fields” instead of stochastic processes in this respect, since temporal characteristics are included
afterwards only via the marking of random fields using velocity distribution parameters.
An approach to including spatial aspects was suggested by Baum and Kalashnikov with respect to batch

Markovian arrival processes (BMAPs), see [3], and [4]. As has been shown in [5], this method easily applies
to a wider class of processes, in particular to multivariate Markov additive processes of arrivals (MAPAs).
Moreover, this approach can successfully be employed to construct queueing models for various dynamic
systems with spatial characteristics, including communication networks such as cell networks based on code
division multiple access (CDMA) [5, 6]. The movement of customers, however (e.g., mobiles with calls in
progress), has not been considered yet.
In this paper, spatial arrival processes over some subset R of a complete separable metric space (Polish

space) are taken as a basis for producing point patterns over time, and they are combined with the definition
of a set of group operations mappingR into itself. The modelling technique described in [5,6] can be applied
here with minor changes. Further, the transient as well as the equilibrium distributions of the number of
moving customers in any Borel subset ofR (or corresponding equations for them) can be obtained. The main
difference to the approach of Baccelli et alii [1,2] lies in the fact that arrivals and departures of customers are
modelled by stochastic processes over time (not random fields in a space), which not only reflect lifetime
characteristics, but also include the description of spatial distribution as well as dynamical behaviour of
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customers. Starting point for our research are the results obtained for stations with infinite and finite number
of servers in [5] and [6]. These stations are adequate models for CDMA based wireless networks. Any user’s
request in such networks receives service immediately after its occurrence, at least as long as total capacity
tolerates it.
The paper is organized as follows. In Section 2we introduce basic notation, define spatial arrival processes

under consideration, and summarize some properties of these processes. We are interested in the situation
when all customers emerge and are served in a subset R of the plane R2. Section 3 is devoted to service
systems fed by spatial arrival processes. In Subsection 3.1, a survey of former results for an infinitely many
servers system is given. It provides a basis for further investigation of systems with moving customers.
Subsection 3.2 refines some results obtained in [5] for loss systems with finite number of servers. In both
Subsections 3.1 and 3.2 differential equations for basic characteristics of interest are derived. In Section
4 we consider models with moving customers assuming that the trajectories are constructed by a group
mapping of R into itself. The movement assumptions are described in Subsection 4.1. In Subsection 4.2
we examine an infinite server model with spatial Cox arrival process and moving customers. Here, it is
possible to get explicit expressions for both non-stationary and stationary characteristics (joint distributions
of numbers of customers being served in no-overlapping subsets of R). Subsections 4.3 and 4.4 deal with
the SBMAP/G/∞ and the SMAPA/G/c/c model with moving customers, respectively. We derive
differential equations for the basic system characteristics by generalizing the results of Subsection 3.2.
Section 5 contains a short discussion of further generalizations, mentioning also difficulties with respect to
practical application of obtained results.

2. PRELIMINARIES

2.1. Notation

Let us introduce some basic notation used throughout the paper.
Random vectors are denoted by bold face upper case Roman letters (X,Y, etc.), elements of Rd are

denoted by bold face lower case Roman letters (e.g., x = (x1, x2, . . . , xd)), and matrices by upper case
Roman letters (A,B, etc.). Relations≤,≥,<,>, etc. onRd are to be understood to hold for each component.
For sequencesA = {A0, A1, . . . },B = {B0, B1, . . . } of (m×m)-matriceswe define a discrete convolution
by

(A ∗B)v =
v∑

`=0

A`Bv−`.

The unit element in the semi-group of such sequences of (m×m)-matrices with respect to the operator “∗”
is the sequence 1 = {I,O,O, . . . }, where I and O are the unit and the null matrices, respectively. The
convolutional variant of the exponential function of At = {A0t, A1t, . . . } (where t is a scalar) is given by

e∗At =
∞∑

ν=0

(tν/ν!)A∗ν .

2.2. Arrival Process

In mobile networks, arrivals can be of different types (e.g., voice, video, etc.) with different arrival laws.
In order to describe arrival process in time, one should take into account at least two features: the arrival
regime (e.g., its intensity) and characteristics of arriving customers (their service times, type, etc.). This can
conveniently be done with the help of a time-homogeneous Markov-additive process of arrivals (MaP). Such
a process was considered in Çinlar [7], Prabhu [8], and Pacheco and Prabhu [9]. The state of the process is a
pair (X, J) = {(Xt, Jt) : t ∈ [0,∞)}, where the phase component J is a continuous-time Markov process
with a finite state space E = {1, . . . ,m}. The additive component X takes values in Rd. The MaP (X, J)
is also a continuous-time Markov process with the state space Rd × E.
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A multivariate Markov additive process of arrivals (MAPA) is a MaP with the additive component
taking values only in the set of nonnegative d-dimensional integer vectors. A univariate MAPA (d = 1)
is an ordinary BMAP as introduced by Neuts [10, 11, 12] and Lucantoni [13]. For d > 1 we speak of a
multivariateMAPA. We assume thatX0 = 0 = (0, . . . , 0) a.s.
Typically, the phase component J determines the arrival characteristic of the current type whereas the

additive component X counts arrivals and may in case contain necessary information about the service
process (e.g., if batches in a no-waiting system are interpreted as required amounts of service [6]).
Any MAPA can be defined by the matrix Pn(t) = (Pn;ij(t))i,j∈{1,...,m} of the transition probabilities

Pn;ij(t) = P (Xt = n, Jt = j | X0 = 0, J0 = i) .

Let Dn;ij be the transition intensities from (k, i) to (k + n, j), i, j ∈ E, k,n ∈ Nd
0, (n, j) 6= (0, i) and

denote by Dn = (Dn;ij)i,j∈{1,...,m} the corresponding intensity matrices. We put

λi =
∑

(j,n) 6=(i,0)

Dn;ij

and
D0;ii = −λi .

We assume, throughout this paper, that the corresponding MAPA is stable that is, λi < ∞ for all i ∈ E.
Let us set

pi(n, j) =
Dn;ij

λi
, (j,n) 6= (i,0)

and
pi(0, i) = −1, i ∈ E .

Then any MAPA can be treated as follows. The phase component Jt stays at a state i an exponentially
distributed time having the parameter

Λi = λiqi ,

where
qi =

∑
n,j: j 6=i

pi(n, j).

After this, it jumps to a state j 6= i and a batch of customers n (may be, n = 0) arrives with the
probability pi(n, j)/qi. While the phase process Jt stays at a state i, the arrival process can be viewed as
a superposition of conditionally independent Poisson processes with parameters λipi(n, i), n 6= 0, the nth
process corresponding to arrivals of n-batches. Considering n-batches, one can take into account different
types and group arrivals.
If pi(n, j) = 0 for j 6= i and n 6= 0 then the arrival process is calledMarkov modulated. In it, there is no

arrival when the phase component J changes its value. This particular case is of special importance and we
will consider it separately in the examples. Let us consider a special univariate case of a Markov modulated
process in order to introduce the corresponding notation used in the examples. In this case, d = 1. Assume
that pi(n, j) = 0 for any n ≥ 2 that is, the batch size can be only 1. Denote pij = pi(1, j)/qi for j 6= i.
Then the phase process J can be completely defined by the two collections (Λi)i∈E and (pij)i,j∈E (pii = 0),
where the parameter Λi defines the time being in state i and pij is the probability to jump to state j from state
i of the process J . In order to completely define the Markov modulated process, parameters µi = λipi(1, i)
ought to be given. Evidently µi is the conditional arrival intensity provided that the phase is at state i. As
we have mentioned, for the Markov modulated process, the phase process Jt is itself Markov. If we make
no assumption about J , but assume that the arrival process is conditionally non-homogeneous Poisson with
the intensity µJt provided that a trajectory of J is given, then the arrival process is called double-stochastic
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or Cox process. When considering a Cox process, we will not assume necessarily that the state space E of
the phase process J is finite.
In the sequel, we have to order elements with vector indices. For this, we define, for any dimension d, a

bijection g : Nd
0 → N0 (see [5, 6]) by

g(n) =
d−1∑
u=0

Au−1∑
v=0

(
d− u + v − 1

d− u− 1

)
for n 6= 0, g(0) = 0,

where Au =
∑d

ν=1 nν −
∑u

ν=1 nν for 1 ≤ u ≤ d, A0 =
∑d

ν=1 nν . For example, if d = 2, then vectors
n = (n1, n2) are ordered according to the sequence (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2),
(0,3), . . . .
Let g−1 be the inverse of g, and assume that

∆ = {Dg−1(0), Dg−1(1), . . . },
Π(t) = {Pg−1(0)(t), Pg−1(1)(t), . . . }

are sequences of the corresponding (m ×m)-matrices. Then the Chapman–Kolmogorov equations and the
Kolmogorov differential equations for a stable MAPA can be written in the following matrix forms as

Π(s + t) = Π(s) ∗Π(t),
d

dt
Π(t) = ∆ ∗Π(t)

and the solution to the differential equation as Π(t) = e∗∆t (cf. [3, 4]).
For a univariate MAPA, i.e., a BMAP, we do not have to order matricesD and P , and similar expressions

for transition probabilities can formally be obtained from the expressions above by plugging there g(n) = n,
n ≥ 0.

2.3. Spatial Arrival Processes

The following construction of spatial Markov-additive processes of arrivals (SMAPA) is similar to the
particular case of spatial BMAP (SBMAP) which, in its most general form, was constructed by Breuer [14],
who admitted the phase space to be uncountable (continuous). This version, however, is beyond of our scope.
For a finite phase space E a definition of SBMAP was given by Baum and Kalashnikov [4] (cf. also [3]
for a rudimentary version). Following to these constructions, a rough characterization of an SMAPA can be
viewed as a generalization of a MAPA, whose rate matrices are equipped with probability measures over
Borel subsets of a region R of some Polish space S. We will assume, for definiteness, that S = R2.
Consider a MAPA defined by the sequence ∆. Let

Φ = {φn;ij : i, j ∈ E, n ∈ Nd
0}

be a family of probability measures over B(R), the σ-algebra of Borel subsets ofR. Then the spatial MAPA
(SMAPA) is defined by its rate matrices for any S ∈ B(R):

Dn;ij(S) = λipi(n, j)φn;ij(S), n 6= 0,

D0;ij(S) = λipi(0, j) + λi

∑
n6=0

pi(n, j)φn;ij(R \ S) (2.1)

(notice that we formally set pi(0, i) = −1 for i ∈ E). Loosely speaking, the spatial generalization of a
MAPA consists of the additional assumption that each nonempty n-batch arriving at a time when the phase
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process of the MAPA jumps from state i to state j (may be, i = j) is nested at a subset S with the probability
φn;ij(S).
LetXt(S) be the total number of vector-valued arrivals at a subset S during time t. Then (Xt(S), Jt) is

a homogeneous Markov process for each Borel S. Let

Pn;ij(S, t) = P{Xt(S) = n, Jt = j | X0(S) = 0, J0 = i}

be its transition probability. Similarly to the Subsection 2.2, the sequence

Π(S, t) = {Pg−1(0)(S, t), Pg−1(1)(S, t), Pg−1(2)(S, t), . . . }

is again given by
Π(S, t) = e∗∆(S)t

where
∆(S) = {Dg−1(0)(S), Dg−1(1)(S), Dg−1(2)(S), . . . }.

Let now S = {S1, S2, . . . , Sκ}, κ > 0, be a family of non-overlapping Borel subsets of R and set

~Xt(S) = {Xt(S1),Xt(S2), . . . ,Xt(Sκ)} .

Furthermore, let
P~n;ij(S, t) = P

(
~Xt(S) = ~n, Jt = j | ~X0(S) = 0, J0 = i

)
, (2.2)

where ~n = (n1,n2, . . . ,nκ) and each nc (1 ≤ c ≤ κ) is an d-dimensional integer vector. Assume that
P~n(S, t) is a matrix with elements (2.2). Consider sequences

Π(S, t) = {P~n(S, t)}~n≥0

and
∆(S) = {D~n(S)}~n≥0 .

Define for them the convolution operation as follows

(
∆∗0(S)

)
~n

=

{
I, if ~n = 0,

O, otherwise,(
∆∗1(S)

)
~n

= (∆(S))~n for all ~n ∈ N0
κ+d,(

∆∗k(S)
)

~n
=

g(~n)∑
`=0

(
∆∗k−1(S)

)
~n−g−1(`)

Dg−1(`)(S) for k ≥ 1.

The following theorem was proved in [4].

Theorem 1. If S1, S2, . . . , SK are mutually non-overlapping Borel subsets, then the joint distribution of
the components of the random vector {~Xt(S), Jt} is given in a convolutional exponential form as

Π(S, t) = e∗∆(S)t,

Pn(S, t) =
∞∑

ν=0

tν

ν!
(∆∗ν(S))n .

Let us return to a particular case of the Markov modulated process that was defined in Subsection 2.2
by the collections of parameters Λi, pij , and µi. In order to define a spatial version of this process, one can
additionally define a collection (φi(S))i∈E of probability measures on Borel subsets of R. The quantity
φi(S) is the probability that a customer who arrived at a time when the phase process is at a state i ∈ E
is placed at a subset S. Similarly, a Cox process can be generalized to a spatial Cox process by defining a
family (φi(S))i∈E where E is not necessarily finite or even denumerable.
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3. SERVING SPATIAL ARRIVAL PROCESSES

In mobile networks, waiting for service typically is not possible. Therefore, service systems without
waiting rooms are of primary practical interest. We focus on a system with infinitely many servers, where
all customers receive immediate service, and on a loss system with finite number of servers. In this section
we recapitulate some results from [5] and [6] for non-moving customers.

3.1. The SBMAP/G/∞ System

Consider the SBMAP/G/∞model, i.e., the system with univariate arrival process and infinitely many
servers. Following to [6], let us fix a Borel subset S ⊂ R. Denote by 0 < T0 ≤ T1 ≤ T2 ≤ . . . successive
arrival epochs of customers to this subset S. Clearly, Ti can be equal to Tj if and only if both the ith and the
jth customers belong to the same batch. We assume that separate customers occupy identical servers, and
their service times are iid random variables with a common distribution function F , F (0) = 0. Because of
this, the order of customers inside batches is of no importance. LetBi be the service time of the ith customer.
Define indicator functions

χS
i (u) =

{
1, if Ti ≤ u < Ti + Bi,

0, otherwise,

for all i ≥ 1. Then χS
i (u) = 1 if and only if the ith customer is in service at time u. Let, for u ≤ t,

Nu,t(S) =
∑

i: Ti≤u

χS
i (t)

be the number of customers arrived to S until time u and still being in service at time t. In particular,

Nu(S) = Nu,u(S)

is the number of customers in the system at time u. Assume that N0(S) = 0. Evidently, the process
(Nu,t(S), Ju), 0 ≤ u ≤ t, is Markov, for any fixed t. Let

Qr;ik(S; u, t) = P (Nu,t(S) = r, Ju = k | J0 = i)

In order to write differential equations for functionsQr;ik(S; u, t), we consider their infinitesimal increments
over [u, u + du] and take into account the following fact: if, at time u, a batch of size n arrives, then

bk(n, F (t− u)) =
(

n

k

)
(1− F (t− u))k Fn−k(t− u), 0 ≤ k ≤ n, (3.1)

is the probability that exactly k customers from these n will be resident at time t.
Let Qr(S; u, t) stand for the matrix with elements Qr;ik(S; u, t), and assume that

Q(S; u, t) = {Q0(S; u, t), Q1(S; u, t), . . . }

is the corresponding sequence of matrices. Denote

Qr(S; t) = Qr(S; t, t) ,

Q(S; t) = Q(S; t, t) ,

Rk(S; v) =
∞∑

n=k

Dn(S)bk(n, F (v)), v ≥ 0, k ≥ 0,

R(S; v) = {R0(S; v), R1(S; v), . . . } .

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 1 № 1 2001



STOCHASTIC MODELS FOR COMMUNICATION NETWORKS 39

Then the following matrix differential equation holds:

∂

∂u
Qr(S; u, t) = (Q(S; u, t) ∗ R(S; t− u))r . (3.2)

According to Theorem 1 in [6], the sequence of transient state probabilities Q(S; u, t) can be computed
by iterations:

Q(0)(S; u, t) = 1,

Q(i+1)(S; u, t) = 1 +
∫ u

0
Q(i)(S; v) ∗ R(S; t− v) dv , i ≥ 0 ,

where 1 = {I,O,O, . . .}. It is well known that these iterations converge to a unique sequence

Q(S; u, t) = lim
i→∞

Q(i)(S; u, t) . (3.3)

(see, e.g., [15] for a matrix analog of equation (3.1)).
The equilibrium distribution exists for each stable BMAP and each service time distribution F with the

finite mean. It is given by the probabilities

Qr;j(S) = lim
t→∞

Qr;ij(S; t), ∀ j ∈ E, r ≥ 0 , (3.4)

independent of the initial phase J0 = i.
These results can substantially be simplified in the Markov modulated case. We will consider this case

separately in Section 4.2, where explicit solutions are obtained and further generalizations are indicated.

3.2. The SMAPA/G/c/c System

In this subsection we assume that the arrival process is SMAPA (as it was described in Subsection
2.3) defined by matrices Dn(S). In case of a multivariate SMAPA, arrivals transport batches of vectors
n = (n1, . . . , nd) into the system. The components ni, i ∈ {1, . . . , d}, can be interpreted as customer
class specific batch arrivals. There are ci servers available for each class i ∈ {1, . . . , d}, and we assume
that the vector c = (c1, . . . , cd) additionally determines a capacity restriction for the whole system, each
component describing a class specific restriction. This means that inR there cannot be more than c customers
simultaneously, and that all arrivals to the filled system are lost. The actual numbersNt,i of class-i customers
in the system at time t define what is called the level vectorNt = (Nt,1, . . . , Nt,d) at time t (or the level for
short).
Accordingly, for each S ∈ B(R), we writeNt(S) = (Nt,1(S), . . . , Nt,d(S)) for the vector of customer

numbers of different classes in subset S at time t (we may say thatNt,i(S) is the number of class-i customers
being served at subset S at time t). The set of possible system levels is

N = {k : 0 ≤ k ≤ c} .

If, at some moment, the system level is k = (k1, . . . , kd) and, at this time, a batch n of new customers
arrived, then the new system level becomesm = (m1, . . . , md) with mi = min(ki + ni, ci), 1 ≤ i ≤ d.
Bearing this in mind, let us define, for each k ≤ c and n ≤ c − k, a set of batches B(k,n) as follows. A
vectorm = (m1, . . . , md) belongs toB(k,n) if and only if its components satisfymc = nc if nc < cc−kc

ormc ≥ nc if nc = cc − kc, 1 ≤ c ≤ d. Put

D
(k)
n (R) =

∑
h∈B(k,n)

Dh(R) , (3.5)
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where Dh;ij(R) = λipi(n, j), the matrices Dn(S) being defined according to (2.1). Suppose that service
times for different classes have different distributions in general. More specifically, let Fc be a service time
distribution function for customers of class c, 1 ≤ c ≤ d, Fc(0) = 0. We will also use the renewal functions

Hc(u) =
∞∑

k=1

F [k]
c (u)

and their densities (assuming that they exist)

hc(u) =
dHc(u)

du
for u ≥ 0 ,

where F
[k]
c is the k-fold convolution of Fc.

Let, for r ≤ l ≤ c and i, j ∈ E, Q(l)
r;ij(S; u, t) denote the probability that the state (the system level and

the phase) is (l, j) at time u ≤ t, and r the vector of class specific customers in S remaining resident in S
up to time t, given that the process starts from a state with zero customers in R and the phase being i. We
write Q

(l)
r (S; u, t) for the corresponding matrix, i.e.,

Q
(l)
r (S; u, t) =

(
(Q(l)

r;ij(S; u, t))
)

i,j∈E
.

For a non-spatial arrival process (one can formally regard that, in this case, S = R and therefore S can
be omitted), the following theorem was proven in [5].

Theorem 2. Let 0 ≤ u ≤ t and 0 ≤ r ≤ l ≤ c. Then the matrix Q
(l)
r (u, t) satisfies the differential

equation

∂Q
(l)
r (u, t)
∂u

=
r∑

m=0

l−(r−m)∑
k=m

Q
(k)
m (u, t)D(k)

l−k

d∏
c=1

brc−mc(lc − kc;Fc(t− u))

+
d∑

c=1

hc(u)
(
Q

(l+ec)
r (u, t)(lc + 1− rc)δc−l−ec − Q

(l)
r (u, t)(lc − rc)

)
,

where the functions brc−mc are defined in (3.1), ec is an d-dimensional vector consisting of zeros except
the cth component which is equal to 1, and δx is the Kronecker function, i.e., δx = 1, if x ≥ 0, and zero
otherwise.

In order to derive similar differential equations for the case of a spatial arrival process we consider a time
interval [u, u + du] and take into account that, during this interval, at most one arrival can occur (if one
neglect terms o(du)). An arrival in S can change the number of t-resident customers as well as the system
level, but an arrival in R \ S may change only the system level. As a consequence, as long as the vectorm
of t-resident customers in S at time epoch u is less than the corresponding vector r at time epoch u + du,
only arrivals to subset S have to be considered, whereas for m = r also arrivals to the complement of S
have to be counted.
Let

U
(k)
l−k,r−m(S ;u, t) = D

(k)
l−k(S)

d∏
c=1

brc−mc(lc − kc;Fc(t− u)) ,

V
(k)
l−k(S; u, t) = D

(k)
l−k(S)

d∏
c=1

b0(lc − kc;Fc(t− u)) + D
(k)
l−k(R \ S) ,

W
(l,ec)
c; r (S ;u, t) = Q

(l+ec)
r (S; u, t)(lc + 1− rc)δc−l−ec

−Q
(l)
r (S; u, t)(lc − rc) . (3.6)
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The corresponding differential equation then becomes

∂Q
(l)
r (S; u, t)

∂u
=

∑
0≤m≤r
m 6=r

l−(r−m)∑
k=m

Q
(k)
m (S; u, t)U (k)

l−k, r−m(S ;u, t)

+ Q
(l)
r (R; u, t)D(l)

0 (S) +
∑

r≤k≤l
k 6=l

Q
(k)
r (S; u, t)V (k)

l−k(S; u, t)

+
d∑

c=1

hc(u)W (l,ec)
c; r (S ;u, t) . (3.7)

Recall that the inequality m ≤ r with m 6= r in (3.7) means that each component of m is less or equal
to the corresponding component of r, while at least one component of r is greater than the corresponding
component ofm.
The sum

Qr(S; u, t) =
∑
l≥r

Q
(l)
r (S; u, t)

contains complete information about t-resident customers observed at epoch u ≤ t in S, and the transient
state probability matrices can be obtained asQr(S; t) = Qr(S; t, t). Since the model under consideration is
stable, these matrices tend to finite limits as t → ∞, providing a sequence of equilibrium state probability
vectors with matrix components

Qr(S) = (Qr;1(S), Qr;2(S), . . . , Qr;m(S)),

where
Qr;j(S) = lim

t→∞
Qr;ij(S; t), i ∈ E = {1, . . . ,m}, 0 ≤ r ≤ c .

In order to find a solution to the differential equation (3.7), we follow the trick used in [5] where the
corresponding equation for the non-spatial case was transformed into a homogeneous matrix-vector differ-
ential equation by ordering the doubly indexed (matrix) structures into single-indexed (vector) structures.
Let β : Nd

0 × Nd
0 → N0 denote a function that uniquely maps a pair (l, r) ∈ {(x,y) : 0 ≤ x,y ≤ c} of

vector indices to an integer β(l, r). To be more precise, letK be a total number of possible system levels,

K =
d∏

i=1

(1 + ci),

and β denote a one-to-one correspondence between the set {(x,y) : 0 ≤ x,y ≤ c} and the set of integers
{0, 1, 2, . . . , aK} with aK = K2 − 1. Obviously, there are several possibilities to define β (the function g,
however, as defined in Section 2 is inadequate here because of the capacity restriction). The next step is to
order matrices Q

(l)
r (S; u, t) by means of β, denoting

Q
(l)
r (S; u, t) = Q[β(l,r)](S; u, t), 0 ≤ r ≤ l ≤ c ,

where
Q

(n)
m (S; u, t) = O, if m 6≤ n or n 6≤ c ,

and to define the sequence

Q[β](S;u, t) = (Q[0](S; u, t), Q[1](S; u, t), . . . , Q[aK ](S; u, t)) .

Then the following theorem is an immediate consequence from (3.7) (compare also [5], and refer to the
above definition of U (k)

l−k,r−m(S; u, t) and V
(k)
l−k(S; u, t)).
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Theorem 3. For r ≤ l ≤ c and u ≤ t, the equation (3.7) takes the form

∂Q[β](S; u, t)
∂u

= Q[β](S; u, t)Hc(S; u, t) , (3.8)

where Hc(S;u, t) is a (aK × aK)-matrix of (m ×m)-matrices defined as follows. Assume that β−1(i) =
(m,k) and β−1(j) = (r, l). Then the (i, j)-entry in Hc(S; u, t) (denoted below for simplicity as (H)i,j) is
represented by the following expression:

(H)i,j =



O, if m 6≤ k, or r 6≤ l, or m 6≤ r,
U

(k)
l−k,r−m(S; u, t), if m < r,m ≤ k ≤ l− (r−m),

V
(k)
l−k(S; u, t), if m = r, r ≤ k,k 6≥ l,

D
(l)
0 (R)− I

∑d
c=1 hc(u)(lc − rc), if m = r and k = l,

I
∑d

c=1 hc(u)(lc − rc + 1), if m = r and k = l + ec,
and c− (l + ec) ≥ 0,

O, in all other cases.

(3.9)

Theorem 4. The solution to (3.8) has the form

Q[β](S; u, t) = Q[β](S; 0, t)X (S; u, t) ,

where X is an (aK × aK)-block matrix with X (S; 0, t) = I, satisfying the same differential equation (3.8).
It can be found as the limit (as i →∞) of the following successive approximations:

X0(S; u, t) = I,

Xi+1(S; u, t) = I +
∫ u

s=0
Xi(S; s, t)Hc(S; s; t) ds i ≥ 0 . (3.10)

Given Q[β](S; u, t) for u = t, one can find the transient state probability matrices with elements

Qr;i,j(S; t) = P (Nt(S) = r, Jt = j | N0(S) = 0, J0 = i) , (3.11)

using the equality
Qr(S; t) =

∑
l≥r

Q[β(r,l)](S; t, t) =
∑
l≥r

Q
(l)
r (S; t, t) . (3.12)

The equilibrium state probabilities can be found as the limits

Qr;j(S) = lim
t→∞

Qr;ij(S; t) ,

that exist due to the stability of the queue.

4. SERVING MOVING CUSTOMERS

4.1. Modelling of Movements

Assume that some spatial arrival process is given (SMAPA, SBMAP, spatialMarkovmodulated, or spatial
Cox process). And let each arriving customer immediately, upon arrival, start moving in space in accordance
with the law

x(s) = Υs(x) , (4.1)
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where x is its position upon arrival, and x(s) is its position at time s. Actually, values x(s) are defined for
s ≥ 0 but it is convenient to define them for all −∞ < s < ∞. For this, we assume that {Υs}−∞<s<∞ is a
collection of group operations mapping the space R into itself. In particular, Υs+t = ΥsΥt for all s, t. Let

Υs[S] = {y : y = Υs(x), x ∈ S}, s ≥ 0,

and
Υ(−s)[S] = {x : Υs(x) ∈ S}, s ≥ 0

for each measurable subset S ofR. By the assumption thatΥs forms a group, we get thatΥ(−s)[S] = Υ−s[S]
for all −∞ < s < ∞. The curves (Υs(x))−∞<s<∞ (x ∈ R) can be viewed as the traces along which
customers are moving.
In applications theremay be several streams ofmoving customers aswell as sets of non-moving customers,

movements may occur in different directions, and the directions can be chosen randomly. In order to consider
these possibilities, one can consider several group operations and introduce a random mechanism of their
choosing. For simplicity, we do not consider such possibilities in this paper leaving this for future.

4.2. Spatial Cox Arrivals with Infinitely Many Servers

Let us consider a system consisting of infinitely many servers serving a spatial Cox arrival process
defined by a phase process J with the state space E (not necessarily finite), intensities (µi)i∈E , and a
collection of measures (φi(S))i∈E , where S is a Borel subset of R. We assume that {Jt}t≥0 is a random
process with cadlag trajectories (right-continuous and having limits from the left at each point t). By the
definition of a spatial Cox process, customers appear in time and space in accordance with the intensity
ξJu(S) = µJuφJu(S), meaning that the probability for a customer to arrive during time interval [u, u + ∆u]
in a subset S ⊂ R is ξJu(S)∆u + o(∆u). Assume further that each customer moves in space in accordance
with the law (4.1).
Assume, additionally, that each customer appearing at a time epoch, when the phase process J is in

state j ∈ E, is served according to the distribution function Fj(u) independently of other customers. Set
F j = 1− Fj . Our goal is to find time-spatial probabilities like

Qk1, ... ,kn(S1, . . . , Sn; t) = P (Nt(S1) = k1, . . . , Nt(Sn) = kn) , (4.2)

whereNt(Si) is the number of customers in subset Si at time t, and all Si are disjoint. We shall also calculate
moments as well as stationary characteristics of the above distribution. Let

ξt = ξJt(R) (4.3)

and

Ξt =
∫ t

0
ξu du . (4.4)

Lemma 1. In the case n = 1 in (4.2), Nt(S) has the following distribution

Qk(S; t) = P (Nt(S) = k) =
1
k!

E
[
Θk(S; t) exp(−Θ(S; t))

]
, t ≥ 0 , (4.5)

where

Θ(S; t) =
∫ t

0
ξJt−u(Υ−u[S])F Jt−u(u) du . (4.6)
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Proof. Let us fix t > 0 and the trajectory of the modulating process {Ju}0≤u≤t. Then the total number
of customers Xt that arrived within [0, t) follows the Poisson distribution (conditioned by {Ju}0≤u≤t):

P(Xt = n) =
Ξ n

t

n!
exp(−Ξt).

GivenXt, all customers can be regarded as independent, and their arrival times are distributed in accordance
with the density ξu/Ξt, 0 ≤ u ≤ t. Furthermore, if a customer arrives at time u, then it occurs in a subset S
at time t if and only if
(i) its virtual position at time t belongs to S that is, it emerged in a subset Υu−t[S];
(ii) its service time is greater than t− u, the probability of this is F Ju(t− u).
Then q(S; t) = Θ(S; t)/Ξt (see (4.6)) is a conditional probability that a customer will be in a subset S

at time t. This yields

P (Nt(S) = k | {Ju}0≤u≤t) =
∑
n≥k

1
n!

Ξ n
t e−Ξt

(
n

k

)
qk(S; t)(1− q(S; t))n−k ,

and, consequently, (4.5).

We can rewrite the result of Lemma 1 in terms of generating functions as follows.

Corollary 1. For |z| ≤ 1,

E
[
zNt(S)

]
= E [exp (−(1− z)Θ(S; t))] .

Quite similarly, one can obtain the following general result.

Theorem 5. For an arbitrary n ≥ 1, disjoint subsets S1, . . . , Sn of Rd, and |zi| ≤ 1,

Qk1, ... ,kn(S1, . . . , Sn; t) = E

[
n∏

i=1

(Θ(Si; t))ki

ki!
exp (−Θ(Si; t))

]
,

E

[
n∏

i=1

z
Nt(Si)
i

]
= E

[
exp

(
n∑

i=1

(1− zi)Θ(Si; t)

)]
.

Theorem 5 easily yields both non-stationary and stationary moment characteristics of the vector (Nt(S1), . . .,
Nt(Sn)).
In the rest of this subsection we assume that E = {1, , . . . , m}. Set

πk(t) = P(Jt = k),
πkl(u, t) = P (Ju = k, Jt = l) ,

νi(t) = E[Nt(Si)], 1 ≤ i ≤ n,

νij(t) = E [Nt(Si)Nt(Sj)] , 1 ≤ i, j ≤ n.

Corollary 2. For any t and any i, j ∈ {1, . . . , n},

νi(t) =
m∑

k=1

∫ t

0
πk(t− u)ξk(Υ−u[Si])F k(u) du ,

νij(t) =
m∑

k,l=1

∫ t

u,v=0
πkl(t− u, t− v)ξk(Υ−u[Si])F k(u) ξl(Υ−v[Sj ])F l(v) du dv .
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Assume now that the phase process J is time-homogeneous (yielding, in particular, that πkl(t, t + s)
does not depend on t). Let

πk = lim
t→∞

πk(t),

πkl(s) = lim
t→∞

πkl(t, t + s), s ≥ 0.

In this case, there exist limiting values

νi = lim
t→∞

νi(t),

νij = lim
t→∞

νij(t).

Corollary 3.

νi =
m∑

k=1

πk

∫ ∞

0
ξk(Υ−u[Si])F k(u) du ,

νij =
m∑

k,l=1

∫
u≤v

πkl(v − u)ξk(Υ−u[Si])F k(u)ξl(Υ−v[Sj ])

+
m∑

k,l=1

∫
u>v

πkl(u− v)ξk(Υ−u[Si])F k(u)ξl(Υ−v[Sj ])F l(v) du dv .

In the case of a Markov modulated spatial arrival process, J is a time-homogeneous Markov process defined
by intensities Λi and probabilities pij , i, j ∈ E. Then the probabilities {πk} are stationary probabilities of J
and

πkl(s) = πkpkl(s) ,

where pkl(s) = P(Js = l | J0 = k) are transition probabilities of J that can be obtained from the
corresponding Kolmogorov differential equations.
Note that, in Lemma 1 as well as in Theorem 5, it is possible to assume that each customer chooses

its own route randomly that is, to assume that the group Υs is not fixed but can be regarded as a random
element assigned (independently) to each arriving customer. Such a generalization is straightforward and
leads to changing in the function (4.6). Evidently, it allows to model an individual choice of the route by
each customer. But the details of this generalization are out of the scope of this paper.

4.3. The SBMAP/G/∞ Model with Moving Customers

In this subsection we generalize the results of Subsection 3.1 to the case of moving customers. Let the
mapping Υs be continuous in the following sense. Denote Ss = Υ−s[S] and dSs = Ss \ Ss−ds. Suppose
that

lim
τ→0

{Ss \ Ss−τ} = ∅ , ∀s > 0 , (4.7)

and
Φij;n(dSs) = O(ds), ∀i, j ∈ E n ≥ 0. (4.8)

Let Nu,t(S) be again the number of customers who arrived in a subset S until time u and are still in service
at time t ≥ u. Then, with s = t− u, we denote

Qr;ij(Υ−s[S]; u, t) = P (Nu,t(Υ−s[S]) = r, Ju = j | J0 = i)

for the probability that Ju = j and the number of t-resident customers inΥ−s[S] at time u is r. As usual, the
entries Qr;ij(Υ−s[S];u, t) form the matrix Qr(Υ−s[S];u, t).
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To describe the dynamics of the process, we observe the number of arrivals in the varying setΥ−τ [S] for
s ≥ τ ≥ s− du during an infinitesimal interval of length du (see Figure).
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Figure

Let, for t− u = s, Πn;ij(S; s, du) be the probability that Ju = i and the number of those arrivals during the
interval [u, u + du] that would occur in the set S at time t is n provided that Ju+du = j, and set

Πn(S; s, du) = (Πn;ij(S; s, du))i,j∈E .

Obviously,

δn0I + Dn(Υ−s[S] ∩Υdu−s[S]) du + o(du) ≤ Πn(S; s, du)
≤ δn0I + Dn(Υ−s[S] ∪Υdu−s[S]) du + o(du) .

By definition of Dn and according to (4.7) and (4.8),

Dn;ij(Υ−s[S] ∩Υdu−s[S]) = λipi(n, j)Φij;n(Ss) + O(du),
Dn;ij(Υ−s[S] ∪Υdu−s[S]) = λipi(n, j)Φij;n(Ss) + O(du) .

Therefore,
Πn(S; s, du) = δn0I + Dn(Υ−s[S]) du + o(du) .

The probabilities Qr;ij(Υdu−s[S];u + du, t) can now be expressed by

Qr;ij(Υdu−s[S];u + du, t)

=
r∑

k=0

∞∑
n=r−k

Qk;ij(Υ−s[S];u, t)Πn(S; s, du)br−k(n, F (s)), (4.9)

where the probabilities br−k(n, F (s)) are defined in (3.1). It follows that

Qr(Υdu+u−t[S];u + du, t)−Qr(Υu−t[S];u, t)

=
r∑

k=0

∞∑
n=r−k

Qk;ij(Υ−s[S];u, t)Πn(S; s, du)br−k(n, F (s))

−Qr(Υu−t[S];u, t)

and
∂

∂u
Qr(Υu−t[S];u, t)

=
r∑

k=0

∞∑
n=r−k

Qk(Υu−t[S];u, t)Dn(Υu−t[S])br−k(n, F (t− u))

= (Q(Υu−t[S];u, t) ∗ R(Υu−t[S]; t− u))r , (4.10)
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where r ≥ 0 andQ andR are defined in Subsection 3.1. The equation (4.10) completely corresponds to the
equation (3.2). The solution to (4.10) can be found similarly to (3.2), according to Theorem 1 in [6], by the
following iteration algorithm [5]:

Q(0)(Υu−t[S];u, t) = 1 ,

Q(i+1)(Υu−t[S];u, t) = 1 +
∫ u

0
Q(Υs−t[S]; s, t) ∗ R(Υs−t[S]; t− s) ds

and
Q(S; t) = lim

i→∞
Q(i)(Υu−t[S];u, t)

∣∣∣∣
u=t

.

The equilibrium distribution exists for each stable BMAP and each service time distribution with finite mean.
It is given by the probabilities

Qr;j(S) = lim
t→∞

Qr;ij(S; t) ∀ j ∈ E, r ≥ 0 ,

that are independent of the initial phase i.

4.4. The SMAPA/G/c/c System

Similarly to the previous section, analysis of the SMAPA/G/c/c system with moving customers can
be performed by replacing the rate matrices D

(k)
l−k(S) in expression (3.6) by the rate matrices associated

with Υ−s[S], s = t− u. This means that, in equation (3.8), we have to replace the matrixHc(S; u, t) by its
counterpartHc(Υ−s[S]; u, t), i.e., we have to use the expressions

U
(k)
l−k,r−m(Υu−t[S] ; u, t) = D

(k)
l−k(Υu−t[S])

d∏
c=1

brc−mc(lc − kc;Fc(t− u)) ,

V
(k)
l−k(Υu−t[S]; u, t) = D

(k)
l−k(Υu−t[S])

d∏
c=1

b0(lc − kc;Fc(t− u))

+ D
(k)
l−k(R \Υu−t[S]) ,

and D
(l)
0 (Υu−t[S]), substituting them in expression (3.9) in order to define the components (H)i,j of

Hc(Υ−s[S]; u, t).
With these changes all conclusions of Subsection 3.2 remain valid. In particular, Theorem 4 with the

above replacements provides the solution of the matrix differential equation of type equal to (3.8), such
that the conditional transientstate probabilities for the random vectors Nt(S) of customers in S for an
SMAPA/G/c/c system with moving customers are obtained through equation (3.11). The equilibrium
state probabilities Qr;j(S) are obtained by letting t → ∞, which means that the relevant integration in the
iteration scheme corresponding to (3.10) has first to be performed over [0, t), i.e.,

X0(S; u, t) = I,

Xi+1(S; u, t) = I +
∫ t

s=0
Xi(S; s, t)Hc(Υu−t[S]; s; t) ds i ≥ 0 ,

and then the limit
lim
t→∞

Q[β](S; u, t) = lim
t→∞

Q[β](S; 0, t)X (S; u, t)

has to be computed. The matrices

Q
(l)
r (S) = lim

t→∞
Q[β(l,r)](S; t, t), 0 ≤ r ≤ l ≤ c ,
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provide the steady-state probability matrices Qr(S) with the components

Qr;i,j(S) = P{N(S) = r, J = j}, ∀i ∈ E

(that do not depend on i) through Qr(S) =
∑

l≥r Q
(l)
r (S).

5. DISCUSSION

Spatial arrival processes are crucial for models where the location of customers plays a significant role,
for example, for mobile communication networks. Spatial versions of BMAPs [3,4] and their generalizations
have been used to investigate no-waiting models for cell networks with non-moving customers [5,6]. In this
paper, the same approach was generalized to take into account the movement of customers.
The results presented here are far from being complete, and there are many open problems associated

with them. Let us first mention some evident steps that require more complicated notation rather than new
ideas:

- a multivariate model with infinitely many servers generalizing models from Subsections 3.1 and 4.2;
- an arbitrary level dependent BMAP that does not necessarily satisfy (3.7) (cf. [16, 17]);
- joint distributions referring to several disjoint subsets S1, . . . , Sn for models with finite number of
servers considered in Subsections 3.2 and 4.3.

Considering non-trivial generalizations and problems associated with spatial models wemay obey the fact
that, in real systems, customers move in accordance with their individual choice. Therefore, this possibility
should be reflected in a model. We have briefly mentioned about this at the end of Subsection 4.2, pointing
out to the realization of random choice of the route, but there are several other approaches to do this.
As we have seen, explicit solutions were obtained above in only the case of the Cox arrival processes. It

is unrealistic to hope that explicit solutions are possible for more complex cases. But it may be possible to
derive differential equations for characteristics of interest. Therefore, numerical calculations become crucial
for obtaining final results. Extremely complex numerical routines are typical even in case of models with
non-moving customers and non-spatial arrival processes. It is necessary to mention that, for mathematical
problems of this kind, the development of corresponding software seems to be a conditio sine qua non.
Such a development will be efficient in the case when the corresponding differential (or other) equations
are stated in a form convenient for numerical routines. Recall that the requirement of convenience was a
basic inspiration for introducing BMAPs (see [10]). It seems that the equations presented in this paper can
be effectively solved. However, serious research in this direction is necessary.
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