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Validation of queueing models is the main practical task. The Trace-driven simulation approach is often
used for this purpose (Kleijnen et al. 1999, Andronov 2000, 2001). This approach can be described in the
following way. We suppose that a real queueing system of interest has an observed input A1, A2, ..., An and
an observed output or replicateW1,W2, ...,Wn. For example,A1, A2, ..., An form a sequence of arrival times
of customers into a queueing system, W1,W2, ...,Wn form a sequence of sojourn times of the customers
in the system or the output times from the system. The output series are evaluated through a performance
measure (response) X , the average sojourn time of the customers, for example.
We have a theoretical queueing model as well. We should verify its adequacy to the real system, it is the

so-called null-hypothesis. For this purpose we use the same trace A = (A1, A2, ..., An) and produce the
simulation R times. As a result we get R simulated outputs (replicates) W̃

(r)
1 , W̃

(r)
2 , ..., W̃

(r)
n , where r is a

run number of the simulation, r = 1, 2, ..., R. Let X̃(1), X̃(2), ..., X̃(R) be a corresponding sequence of the
performances (responses).
To validate the theoretical model (to test the null-hypothesis), the real and simulated performances X

and X̃(1), X̃(2), ..., X̃(R) should be compared statistically. Some solutions of this problem were given in
(Kleijnen et al. 1999). We consider another approach. The simplest way supposes a sorting of the simulated
performances X̃(1), X̃(2), ..., X̃(R). It gives the order statistics X̃(1), X̃(2), ..., X̃(R) and the estimated α-
quantile of the distribution X̃(bRαc). This procedure gives, for example, a two-sided (1 − α)-confidence
interval for the original value X , ranging from the lower estimated α/2-quintile to the upper (1 − α/2)-
quintile. If X value falls outside this interval then we reject the theoretical model (the null-hypothesis). In
addition, the significance level of this testing is equal to α.
Our aim is to investigate the efficiency of the described approach for a quite general case of queueing

system. We shall consider these systems as a composite two-component embedded Semi-Markov process.
Here the input of the queueing systemA corresponds to a Semi-Markov processA(t). The latter is described
by a discrete set ΩA of states, matrix of one-step transition probabilities P = (Pi,j) and the distribution
function Fi(t) of sojourn time in each state i ∈ ΩA. Obviously,∑

j∈ΩA

Pi,j = 1, Fi(∞) = 1, ∀i ∈ ΩA.

Remind (Ross, 1992, p.86) that "Semi-Markov process records the state of the process at each time point
t". So we have these states as the considered inputA = (A1, A2, ..., An).
Further we suppose that the inner structure of our queueing system is described by a stochastic process

S(t) with a discrete set of states ΩS . If the state J ∈ ΩA of the Semi-Markov process A(t) takes place
then the process S(t) behaves as an independent Semi-Markov process with the matrix PS,J of one-step
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transition probabilities and the distribution function FS,J
i (·) of sojourn time in the state i ∈ ΩS . We shall

name jumps (transitions) of the processA(t) as jumps of the first type and supplemental jumps of the process
S(t) only as the jumps of the second type. Note that the probability to have a jump of the processA(t) at a
time t does not depend on the state of S(t).
Let t∗ be a time moment when a jump of the first type takes place, J− = A(t∗−) and J+ = A(t∗+)

be the states of the process A(t) immediately before and after this time moment. Let JS
− = S(t∗−) and

JS
+ = S(t∗+) be the same for the process S(t). If J+ is entered, the next state JS

+ of the process S(t) is
chosen according to the transition probabilities q

J−,J+

JS
−,JS

+
. Then given that the state chosen is JS

+, the time until

transition of the process S(t) has the distribution function F
S,J+

JS
+

(·) as usually for S(t).

Now we consider the sequence of time moments t1, t2, ... when all jumps occur. Every one of such
moments produces a random variable W̃ , so W̃1, W̃2, ... form the output of our system. To describe the
corresponding stochastic mechanism, we introduce the following notations for the jump of the first type
at the time moment t∗: τ(t∗) - length of the interval between the previous and current jumps of the first
type; U(t∗) - time till t∗ since the last jump of the processes S(t), so-called age of the current state
at t∗. Then the probabilities Pr1(J−, J+, JS

−, JS
+, τ(t∗), U(t∗)) to produce the random variables W̃ are

functions of J−, J+, JS
−, JS

+, τ(t∗) and U(t∗). For the jumps of the second type this probability is denoted
by Pr2(J, JS

−, JS
+, U(t∗)). If the corresponding random variable W̃ will be produced, then its distribution

function is given by the formulas

GS
1 (x;J−, J+, JS

−, JS
+, τ(t∗), U(t∗)) = P{W̃ ≤ x/J−, J+, JS

−, JS
+, τ(t∗), U(t∗)},

GS
2 (x;J, JS

−, JS
+, U(t∗)) = P{W̃ ≤ x/J, JS

−, JS
+, U(t∗)}.

The sequence {W̃i} is an output from the simulated system with the inner structure, that is described by
the process S(t). Let the inner structure of the real system be described by the random process B(t). We
suppose that the process B(t) is similar to the process S(t) but may have some different parameters. Let
W1,W2, ... denote the output for the real processB(t) if the same inputA takes place. Wemust compare two
sequencesWi and W̃i statistically. For this purpose we use some performance measureX = ξ(W1,W2, ...)
and X̃ = ξ(W̃1, W̃2, ...).
Let us calculate a conditional distribution function RS(x/A) of X̃ under the condition that the input

(trace)A is fixed, for example, by simulation:

RS(x/A) = P{X̃ ≤ x/A}.

Let R−1
S (γ/A) be the corresponding γ-quantile: RS(R−1

S (γ/A)/A) = γ.
Now we are able to test the null hypothesis H0 that random processes B(t) and S(t) have the same

probabilistic structure against the alternative hypothesisH1 that they are different. Let us suppose that if the
alternative hypothesis H1 is true then the performance measure X is stochastically greater than X̃ . In this
case we reject the null-hypothesis for the significance level α if the fixed valueX exceeds R−1

S (1− α/A).
In other words the decision interval for the null-hypothesis H0 is (0, R−1

S (1 − α/A)). What is the power
function for this test? We consider this problem in our paper.
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