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Abstract—Various fields of applied probability are concerned by geometric sums.We are here interested
in the reparable systems reliability theory. The distribution of the sojourn time in the perfect state can
be decomposed in successive i.i.d. cycles, the number of cycles having a geometric distribution. It is
usual to approximate the lifetime by the random exponential variable with the same mean. We propose
to bound the error improving some classical results.

1. FROM SYSTEM RELIABILITY TO GEOMETRIC SUM

For a large and highly reliable system the cumulative time spent without failure can be seen as a reasonable
approximation of the system lifetime. Such an approximation is very popular because of its pessimistic aspect.
It is based on the regenerative property of the process (see, for example, Solovyev (1983)). All what we need
is the decomposition of the lifetime as a geometric sum of i.i.d. positive random variables. It is clearly the
case when the dynamics of the system until its failure is a succession of independent cycles and the number
ν of cycles is geometric.

P (ν = k) = qpk−1, (q = 1− p).

The probability q is nothing else that the probability of an unsuccessful restoration during a cycle. The length
of the ith cycle is a random continuous variable Xi with distribution F . All these random variables are
supposed independent. Some refinements can be made to take into account the particularity of the last cycle
but the most difficult problem is the evaluation of the geometric sum distribution

W (x) = P (
ν∑

k=1

Xi ≤ x) = q
∞∑

k=1

pk−1Fk(x) (1)

where Fk is the k-fold convolution of F . Such geometric sums appear naturally in a variety of applications
and therefore have been in the focus of numerous works (see Kalashnikov (1997) and references therein).
A closed form forW is usually not available and we have to get some approximations. In reliability theory,
for very small values of q, the following approximation is often used

W (x) = exp
(
− qx

E(X)

)
. (2)

This approximation is justified by the Renyi Theorem which gives the distribution convergence when q
is vanishing for each fixed x. But the exponential approximation has a good accuracy in other cases and
therefore is very popular among engineers. Our aim is to propose a new family of bounds of the error from a
Chen-Stein method approach. This study has been started from an idea of V.V. Kalashnikov and the results
are dedicated to his memory.
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2. A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTIONS

All what follows is based on the next characterization of the exponential distribution. Let T be a random
variable having the distribution functionW and the reliabilityW (x) = 1−W (x).

Lemma 1. A random positive variable T has the exponential distribution Eλ if and only if

E(λh(T )− h′(T )) = 0 (3)

for any non-negative function h satisfying the condition |h′| < 1 on [0,∞) and such that h(0) = 0.

From this, one can see that the quantity E(λh(T ) − h′(T )) can be viewed as a measure of closeness
betweenW and Eλ. Let us focus on the difference at the point a ≥ 0 and denote:

∆(a) = Eλ(a)−W (a). (4)

Lemma 2. Let fix a ≥ 0, there exists a function ha such that,

∆(a) = E(λha(T )− h′a(T )). (5)

is valid for any continuous positive random variable T. The function may be equal to :

ha(u) =
e−λa

λ
(eλ min(u,a) − 1) (6)

The usefulness of this result clearly appears in the case where no explicit form of the distributionW of T is
available but a special structure of T permits to estimate (or approximate) ∆(a). It is the case when T is a
geometric sum of i.i.d. random variables Xi,

T =
ν∑

k=1

Xi. (7)

Let note that W has a renewal property W = qF + pF ∗W which can be seen in terms of variables (see
Kalashnikov (1997)). Let d= denote the equality in distribution. There exist T ′ such that T d= X +δT ′,where
T and T ′ have the same distribution, δ is Bernouilli and all these involved random variables are independent.
Clearly E(T ) = E(ν)E(X) = 1/λ and the distributionW of T is converging to Eλ when q is vanishing.
In 1990, Brown gave some bounds to evaluate this convergence. Others works were following in the same
direction as Bon and Kalashnikov (1999), Cai (1999) , Willmot and Lin (2001), · · · ).

3. NEW BOUNDS OF GEOMETRIC SUMS

Theorem 1. Let X1, X2, ... be i.i.d. positive random variables with the same distribution as X and ν a
geometric random variable independent from Xi with

P (ν = k) = q(1− q)k−1, k ≥ 1.

The geometric sum
∑ν

n=1 Xn is bounded with

P

(
ν∑

n=1

Xn ≥ u

)
≤ 1

1− q e−λqu

(
e−λqu + (1− e−λqu)F (u) +

λ2q

2
E(X2)

)
. (8)

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 2 № 2 2002



GEOMETRIC SUMS IN RELIABILITY EVALUATION 163

The proof is based on a local expansion of the function h in the expression

λh(V )− h′(V ) d= λh(qX + δV ′)− h′(V ), (9)

where V = qT and V ′ = qT ′. Some technical manipulations are needed. The expression of this upper
bound can be changed with the known parameters. For example, only the moments of F may be known and
a majorisation of F (u) must be used. It is useful to appreciate the comparison with the well-known bounds
of Brown (1990)

P

(
ν∑

n=1

Xn > u

)
≤ 1

p
e−λqu/p +

λ2q

2p2
E(X2) (10)

This comparison has been studied in various situations and the refinement is not uniform. Numerical
simulations have given a significate improving for a large variance of F . In the same way, the Chen-Stein
method provides a family of lower bounds and we propose here one of them.

Theorem 2. Let X1, X2, ... and ν as above. The geometric sum may be bounded with

P

(
ν∑

n=1

Xn > u

)
≥ 1

p

(
e−λqu − q − λ2qE(X2)F (u) + λqe−λquF (u)

)
. (11)

Simulations have been made to appreciate the accuracy. As for the upper bound, comparing to the Brown
bound (1990),

P

(
ν∑

n=1

Xn > u

)
≥ exp

(
−q

p
(λu + λ2E(X2)− 1)

)
(12)

shows that the improving is not uniform. Nevertheless, these new bounds are useful as we can estimate their
terms more accurately if necessary, especially, for small values of u.
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