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Let Fy 5, be a set of different forests with IV rooted trees and n non-root vertices such that roots have the
numbers 1, 2, ..., N and non-root vertices have the numbers 1, 2, . . . , n. We specify the uniform distribution
on Fy 5. Such random forests were studied in [1, 2]. The pair is any two non-root vertices connected by a
chain. We denote by v the number of different chains in a forest from Fy ,,. It is easy to see that v = 7 +n,
where 7 is the number of pairs.

Theorem. Let N, n — oo in such a way that n/N = O(1), n?/N — oo. Then
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uniformly in (k — a)/o lying in any fixed finite interval, where a = n*(n + 3N)/(2N?), 0% = 3n%(n +
N)?/(2N°).

To prove the theorem we can use the generalized allocation scheme [3]. It was shown in [1, 2] that
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where 7, is the number of non-root vertices in the i-th tree, 1 < ¢ < N, &1, ..., En are independent identically
distributed random variables with the Borel — Tanner distribution. It folows from this that
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where (v = &1(&1 —1)/24 - +&nv(En — 1) /2, uy =& + -+ - + £n. The main difficulty in the proof of
the theorem is to get local limit distributions of array schemes of the sums py and ((n, ).

P{r=Fk}=P{(yv=Fk|punv=n}=
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