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The study of traffic on data networks has changed substantially since the appearance of modern com-
munication systems, which are essentially different from the traditional voice traffic networks. The main
difference that appears in modern networks is the dependence structure of the data. While traditional models
are based on assumptions of short range dependence, recent measurements (see [Leland et al.(1994)Leland,
Taqqu, Willinger and Wilson], [Paxson and Floyd(1994)], [Cunha et al.(1995)Cunha, Bestavros and Crov-
ella], [Crovella and Bestavros(1996)]) show the presence of long–range dependence and self–similarity in
the data of network traffic. Presently it is believed that these phenomena are caused by the presence of heavy
tails in the distribution of the service times, which cause the long–range dependence.
In this study we consider a fluid version of a leaky bucket flow control protocol, with an input process in
which the distribution of the session lengths is heavy tailed, causing it to be long–range dependent. The
leaky bucket is a flow control mechanism that is designed to reduce the effect of the inevitable variability
in the input stream into a node of a communication network. Let us consider two types of input processes:
an On–Off process and a M/G/∞ type process. Recently there has been a lot of work concerning fluid
models fed by On–Off or M/G/∞ type processes (see, for example, [Heath et al.(1997)Heath, Resnick
and Samorodnitsky,Heath et al.(1999)Heath, Resnick and Samorodnitsky], [Jelenkovic and Lazar(1999)], a
survey in [Boxma and Dumas(1998)] and a recent study in [Zwart et al.(2000)Zwart, Borst and Mandjes]).
Unlike these studies we concentrate on certain design and performance issues related to the presence of a spe-
cific policingmechanism: the leaky bucket. Queuing systemswith such control mechanism have been studied
before, in particular in a series of papers of A. Berger and W. Whitt ([Berger and Whitt(1992a),Berger and
Whitt(1992b),Berger and Whitt(1992c),Berger and Whitt(1994)]). However, to the best of our knowledge
only the paper of [Vamvakos and Anantharam(1998)] looked at how the leaky bucket input control performs
in the presence of a long–range dependent input. However, while [Vamvakos and Anantharam(1998)] con-
centrated only on the rate of decay of correlations, we look directly at system performance, specifically at
the time until overflow of a large buffer. We show that in the presence of long–range dependence the buffer
still overflows much more often than in the “classical” case, without heavy tailed sessions, hence long–range
dependent input. In spite of that, the leaky bucket input control will reduce the frequency at which the buffer
overflows, in comparison with a system with the same input stream but without input control. It is important
to mention that, unlike the previous authors, who looked at discrete time systems, here we investigate a
fluid–type, continuous time system.
Let work arrive to the system according to some input process. We are going to consider two types of input
processes: an On–Off process and a M/G/∞ type process. For the On–Off process each session lasts a
random length of time. The distribution of an On session’s length isFon and the distribution of an Off session’s
length is Foff. Both distributions have finite mean: µon and µoff respectively. The lengths of different sessions
are independent of each other. In the second case we are going to consider sessions arriving according to a
Poisson process with fixed rate λ > 0. Each session lasts a random length of time with distribution F that
has a finite mean µ. The lengths of different sessions are independent of each other and of the Poisson arrival
process.
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In both cases a session generates work at unit rate. This work arrives at the buffer of the leaky bucket. The
departure of work from this buffer is controlled by tokens that arrive at a buffer of size C at fixed rate γ.
Arriving work can be transmitted instantaneously to the server by consuming tokens. If the token buffer is
empty, the work has to wait for the generation of new tokens. Stored work is transmitted immediately upon
the generation of new tokens. The work that cannot be processed immediately by the server is collected in a
buffer. The server is capable of processing r > 0 units of work per unit of time.
Assume that, in the On–Off case, the session length distribution for the On periods has a regularly varying
tail. That is,

1− Fon(x) = x−αonLon(x), as x→∞,

where Lon is a slowly varying function, and αon > 1. This assumption is a common way to model heavy
tails of session lengths. The assumption αon > 1 assures finite mean session lengths (but sometimes infinite
variance) and hence makes it possible for the system to be stable if the service rate r is high enough. In the
M/G/∞ case assume that

1− F (x) = x−αL(x), as x→∞,

where L is a slowly varying function, and α > 1.
In theM/G/∞ type case we assume from now on that

0 < λµ < r < γ < 1

and in the On–Off case, if we let θ :=
µon

µon + µoff
, then

0 < θ < r < γ < 1.

We show that under certain assumptions the rate at which the expected time until buffer overflow grows is,
roughly, 1/

(
1 − Fon(H)

)
in the case of the On–Off input and 1/

(
1 − F (H)

)
in the case of the M/G/∞

type input, where H >> 0 is the size of the buffer.
Let τ(H) = inf{t ≥ 0 : X(t) > H} be as the time until the server’s buffer content reaches level H
(overflows) and τY (H) = inf{t ≥ 0 : Y (t) > bH} be the time until the leaky bucket’s buffer reaches level
bH . We are interested in the behavior of Eτ(H) and EτY (H) as H →∞. Let the size of the leaky bucket
and the leaky bucket’s buffer (Ymax) grow to infinity as we let the size of the server’s buffer grow to infinity
in the following manner.

C(H) ∼ aH, as H →∞ and

Ymax(H) ∼ bH, as H →∞,

where a and b are constants. Then we have the following results, following an argument that is based on a
large deviations approach.

Theorem 1. For the On–Off input process, if for some p > 1 the p-th moment exists for the Off session
length distribution, then

lim
H→∞

H−αonLon(H)Eτ(H) =

= (µon + µoff)
(

max
{

1
1− r

,
1− a

γ − r
− b

γ − θ
,
γ − θ − (r − θ)a
(γ − r)(1− θ)

})αon

. (1)

For theM/G/∞ type input process,

lim
H→∞

H−αL(H)Eτ(H) =

=
1
λ

(
max

{
1

1 + λµ− r
,
1− a

γ − r
− b

γ − λµ
,
γ − λµ− (r − λµ)a

γ − r

})α

. (2)
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Remark 1. The results of Theorem 1 should be compared to the corresponding performance results
without the leaky bucket input control. Then

lim
H→∞

H−αonLon(H)Eτ(H) = (µon + µoff)
(

1
1− r

)αon

for the On–Off input process (see Theorem 2.3 of [Heath et al.(1997)Heath, Resnick and Samorodnitsky] )
and

lim
H→∞

H−αL(H)Eτ(H) =
1
λ

(
1

1− r + λµ

)α

for the M/G/∞ type input process; see Proposition 4 and the subsequent comment in [Resnick and
Samorodnitsky(1999)]. One can immediately see that, while the leaky bucket input control does not change
the order of magnitude at which the expected time until buffer overflow grows, it does make this expected
time longer.

For the leaky bucket’s buffer we have a similar result.

Theorem 2. For the On–Off input process, if for some p > 1 the p-th moment exists for the Off session
length distribution, then

lim
H→∞

H−αonLon(H)EτY (H) = (µon + µoff)
(

a + b

1− γ

)αon

. (3)

For theM/G/∞ type input process,

lim
H→∞

H−αL(H)EτY (H) =
1
λ

(
a + b

1 + λµ− γ

)α

. (4)

With the previous results it is now easy to prove the following theorem.

Theorem 3. For the On–Off andM/G/∞ type input processes, if for some p > 1 the p-th moment exists
for the Off session length distribution, then we have that

τ(H)
Eτ(H)

∼ exp(1), as H →∞.
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