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1. INTRODUCTION

In this paper, we consider a multiclass queueing network model and the associated queue-length process.
Finding conditions for stability (positive Harris recurrence or rate stability) of this queue-length process
is known to be a non-trivial task since examples in the early 1990’s demonstrated that the usual traffic
conditions were not sufficient to insure stability for such systems (see [1], [7], [8], [11], [12]). A major
breakthrough was made in a paper by Dai [4] (with refinements by Chen [3] and Stolyar [13], among others)
in which the stability of the stochastic system was connected with the stability of a fluid model, which a
continuous, deterministic analog to the original queueing network. Roughly speaking, Dai’s result implies
that a multiclass queueing network is stable if a corresponding mean-value fluid network analog is stable.
The queueing network under consideration may be operating under a particular queueing discipline or a class
of disciplines. Recent examples by Bramson [2] and Dai, Hasenbein, and VandeVate [6] have shown that
the mean-value fluid model of a given stochastic network may not be sharp in determining stability under a
given dispatch policy. This in turn implies that a general converse to Dai’s theorem is not possible. However,
specialized partial converses have been proven by Dai [5], Meyn [9], and Puhalskii and Rybko [10]. We
consider a particular refinement of Dai’s result which appeared in Chen [3]. In particular, Chen proved that
under appropriate strong-law-of-large-number assumptions on the primitive processes, a multiclass queueing
network is globally rate stable if the associated fluid model is globally weakly stable. In this paper, we prove
a partial converse to Chen’s theorem. In particular, we show that if the non-idling fluid model is not weakly
stable, then there exists an ε > 0 such that any ε-deterministic network is not globally rate stable. An
ε-deterministic network can be thought of as a “nearly” deterministic system. We give an example in which
the value ε can be calculated and a non-idling unstable policy can be identified. We also discuss potential
extensions to this result to a larger class of networks. Below we provide more technical details of the main
results.

2. DEFINITIONS AND RESULTS

We will not provide a detailed discussion of the multiclass queueing network, referring the reader to
Dai [4]. Instead, we begin by defining a fluid model. The non-idling HOL fluid model of a multiclass
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queueing network is defined through the following set of equations:

Q̄(t) = Q̄(0) + αt + (P ′ − I)D̄(t), (1)
Q̄(t) ≥ 0, (2)
D̄(t) = MT̄ (t), (3)
T̄ (0) = 0, T̄ (·) is non-decreasing, (4)

Ȳj(t) = t−
∑

k∈C(j)

T̄k(t), non-decreasing (5)

Ȳj(t) can increase only when W̄j(t) = 0 (6)

The parameters in the fluid model are simply the mean value data taken from an associated multiclass
queueing network. The column vector α is the set of exogenous input rates to the network. P is the routing
matrix andM is a diagonal matrix with mean processing times for each class appearing on the diagonal.
We need the next several definitions to state our main results.

Definition 2.1. A pair of functions (Q̄(·), T̄ (·)) on [0,∞) which satisfy (1)–(6) is called a non-idling
fluid solution.

Definition 2.2. A fluid model is called (globally) weakly stable if all fluid solutions with Q̄(0) = 0 have
the property that Q̄(t) = 0 for all t ≥ 0.

Definition 2.3. A fluidmodel solution (Q̄(·), T̄ (·)) is called linearly divergent if there exists an increasing
sequence of time points t1 < t2 < t3 . . . such that

lim inf
n→∞

| Q̄(tn)|
tn

= k > 0.

Definition 2.4. The random variableX with finite mean is said to be ε-deterministic if for every sample
path

∣∣X − E[X]
∣∣ ≤ ε. The network is said to be ε-deterministic if all interarrival and service times are

ε-deterministic.

The next two results are the main results of the paper, which provide a different kind of partial converse
to Dai’s stability result. More precisely, taken together Theorems 2.1 and 2.2 provide an exact converse, in
the case of ε-deterministic networks, for a theorem in Chen [3] which states if the fluid model is globally
weakly stable, then any associated queueing network is globally rate stable.

Theorem 2.1. Consider the non-idling fluid model of an open multiclass queueing network. If the fluid
model is not globally weakly stable, then there exists a non-idling solution which diverges linearly.

Theorem 2.2. Consider a non-idling fluid model. Suppose there exists a linearly divergent fluid solution.
Then there exists an ε > 0 such that any ε-deterministic network associated with the fluid model is globally
unstable in the sense that

|Q(t, ω)| −→ ∞

on every sample path ω, for some non-idling policy. Furthermore, the number of jobs in the network diverges
linearly. In particular, any associated deterministic network is globally rate unstable.
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