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Let us consider non-negative integer random variables η1, . . . , ηN with a joint distribution defined by
the sequence b = (b0, b1, b2, . . . ) and the parameter n as follows. For all integer non-negative numbers
k1, . . . , kN which sum is equal to n we have

P{η1 = k1, . . . , ηN = kN} =
bk1 · · · bkN∑

j1+···+jN=n

bj1 · · · bjN

. (1)

In [1] it was shown that probabilities (1) can be represented as

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · ·+ ξN = n}, (2)

where ξ1, ξ2, . . . are independent identically distributed random variables such that

P{ξ1 = k} = xkbk/B(x), B(x) =
∑

k

xkbk,

and the parameter x depends onN,n in such a way that simplifies obtaining of the corresponding local limit
theorems for the sum of random variables ξ1, . . . , ξN (usually we determine x by the equation Eξ1 = n/N )
[2].
If η1, . . . , ηN , ξ1, . . . , ξN satisfy (2) then we say that these random variables form a generalized allocation

scheme [1]. In books [1, 3, 4] one can find several examples of combinatorial tasks which can be reduced
to a generalized allocation scheme. This allows us to resolve these tasks using asymptotical methods of the
Probability theory when N →∞. Latest investigations [4, 5] show the value of such approach.
Let η(1) ≤ · · · ≤ η(N) be a variational series of random variables η1, . . . , ηN . If p = o(N) as N → ∞

then the component η(N−p) is called big. Recently interest in the research of limit distributions of big
components of the generalized allocation scheme has been growing [6, 7].
Further we suppose that the support of b (suppb) has a maximum span of 1, b0 > 0 and the radius of

convergence of
∑

k xkbk equals 1. By BN (α) we denote a binomial random variable with parameters N
and α. For a non-negative integer r denote Pr =

∑
k>r xkbk/B(x).

Letm be a minimal natural number such that gcd(supp(b0, . . . , bm)) = 1. Below the symbolsC1, C2, . . .
denote some positive constants.

Theorem 1. LetN,n →∞ in such a way that n/N ≤ C1 < supx Eξ1. Let also the parameter x satisfy
the equation n/N = Eξ1, and the following conditions be valid:
(a) bk ≤ C2bl for all k and all l < k such that bl > 0; besides as k ≥ k0 we have bk > 0;
(b) Nxm →∞; 0 < x ≤ C3 < 1;
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(c) p3 = o(NDξ1);
(d) C4(p + 1) ≤ NPr ≤ C5(p + 1); r ≥ m, br > 0;
(e) C6 ≤ bk/bk+1 ≤ C7 as k ≥ k0.
Then
(A) for n/N ≥ C8 and any fixed integer h

P{η(N−p) ≤ r + h} = (1 + o(1))P{BN (Pr+h) ≤ p},

(B) for n = o(N) we have

P{η(N−p) = r} = (1 + o(1))P{BN (Pr) ≤ p};
P{η(N−p) = r+} = (1 + o(1))(1− P{BN (Pr) ≤ p}),

where r+ = min{k| k > r, bk > 0}.

From this theorem follow some known results about the asymptotics of distributions of the components
η(N−p) of the Galton—Watson forest [5] for a fixed p. Besides this theorem gives us analogous results for
p →∞ non-rapidly (see the condition (c)), and the asymptotics of big components of the random recursive
forest for n = O(N) [6].
Theorem 1 does not give us full description of the limit distribution of big components because from

the condition n/N ≤ C1 it follows that the parameter x does not approach the critical point — radius of
convergence of B(x).
Now there is an obvious need to create a common theory that would describe the behaviour of components

of a generalized allocation scheme (2) in all zones of the range of parameters N,n with sufficiently weak
conditions for the sequence b.
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