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Several contributions in the literature have been already devoted to the extension of the classical theory of
continuous-time stochastic systems driven by Brownian motions to analogues in which the driving processes
are fractional Brownian motions (fBm’s for short). The tractability of the standard problems in prediction,
parameter estimation and filtering is now rather well understood. Concerning optimal control problems, as
far as we know, it is far from fully demonstrated (nevertheless, see [1] for a recent attempt in a general
setting). Here our aim is to illustrate the actual solvability of control problems by exhibiting an explicit
solution for the case of the simplest linear-quadratic model.

We deal with the fractional analogue of the so-called linear-quadratic Gaussian regulator problem in one
dimension. The real-valued state process X = (Xt, t ∈ [0, T ]) is governed by the stochastic differential
equation

dXt = a(t)Xtdt + b(t)utdt + c(t)dBH
t , t ∈ [0, T ] , X0 = x , (1)

which is as usual interpreted as an integral equation. Here x is a fixed initial condition, BH = (BH
t , t ∈

[0, T ]) is a normalized fBmwith the Hurst parameterH in [1/2, 1) and the coefficients a = (a(t), t ∈ [0, T ]),
b = (b(t), t ∈ [0, T ]) and c = (c(t), t ∈ [0, T ]) are fixed (deterministic) continuous functions. We suppose
that X is completely observed and that a closed-loop control of the system is available in the sense that at
each time t ∈ [0, T ] one may choose the input ut in view of the passed observations {Xs, s ≤ t} in order to
drive the corresponding state, Xt = Xu

t say. Then, given a cost function which evaluates the performance
of the control actions, the classical problem of controlling the system dynamics on the time interval [0, T ]
so as to minimize this cost occurs. Here we consider the quadratic payoff J defined for a control policy
u = (ut, t ∈ [0, T ]) by

J(u) =
1
2
IE

{
qT X2

T
+

∫ T

0
[q(t)X2

t + r(t)u2
t ]dt

}
, (2)

where qT is a positive constant and q = (q(t), t ∈ [0, T ]) and r = (r(t), t ∈ [0, T ]) are fixed (deterministic)
positive continuous functions.
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Ourmain goal here is to show that actuallywhen the system (1) is driven by a fBmwith someH ∈ (1/2, 1)
instead of a Brownian motion, an explicit solution to the optimal control problem under the performance
criterion (2) is still available.
At first we derive a sufficient condition for optimality in UH . Given u ∈ UH andX = Xu, we introduce

the following backward stochastic differential equation in the pair of unknown (FH
t )-adapted processes

p = (pt, t ∈ [0, T ]) and β = (βt, t ∈ [0, T ]) :

dpt = −a(t)ptdt− q(t)Xtdt + βtdMH
t , t ∈ [0, T ] ; pT = qT XT (3)

where MH is a Gaussian martingale, called in [2] the fundamental martingale associated to BH .

Lemma. Suppose that u ∈ UH is such that u = −(b/r)p where (p, β) is a pair of (FH
t )-adapted

processes which satisfies equation (3). Then u minimizes J over UH .

In order to state our main result, for any fixed s ∈ [0, T ], we introduce the 2× 2 matrix-valued function
Γ(., s) = (Γ(t, s), t ∈ [s, T ]) where

Γ(t, s) =
(

π(t) γ(t, s)
γ(t, s) λ(t, s)

)
,

is the unique nonnegative symmetric solution of the backward Riccati equation

Γ̇(., s) = −a
{
Kc

H(., s)e′1Γ(., s) + Γ(., s)e1[Kc
H(., s)]′

}
−qKc

H(., s)[Kc
H(., s)]′ +

b2

r
Γ(., s)e1e

′
1Γ(., s) ; Γ(T, s) = qTK

c
H(T, s)[Kc

H(T, s)]′ ,

with the vectors e1 and Kc
H(t, s) in IR2 given by

e1 =
(

1
0

)
; Kc

H(t, s) =
(

1
Kc

H(t, s)

)
.

Here for H ∈ (1/2, 1) the functionKc
H is given by

Kc
H(t, s) = H(2H − 1)

∫ t

s
c(r)rH−1/2(r − s)H−3/2 dr , 0 ≤ s ≤ t ,

γ̄(s) = γ(s, s) ; λ̄(s) = λ(s, s) ,

and k(t, s) = kγ̄
H(t, s) :

k̄(t, s) = −κ−1
H s

1
2
−H d

ds

∫ t

s
(r − s)

1
2
−H γ̄(r)dr.

Theorem. There exists a unique opimal control ū in Uad and the optimal pair (ū, X̄) is governed on
[0, T ] by the system

ūt=−
b(t)
r(t)

[π(t)X̄t + v̄t] ; X̄t = X ū
t ,

v̄t=
∫ t

0
[−a(s) +

b2(s)
r(s)

]v̄sds +
∫ t

0
[
k̄(t, s)
c(s)

− π(s)]{dX̄s − [a(s)X̄s + b(s)ūs]ds}

Moreover, the optimal cost is given by

J(ū) =
1
2
{π(0)x2 +

∫ T

0
λ̄(t)d < MH >t} .
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