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1. INTRODUCTION

We establish sub-exponential bounds for the 3-mixing rate and for the rate of convergence to the invariant
measure for a class of diffusion processes satisfying a stochastic differential equation in RY,

t
Xt:IE—F/ b(XS)dS+Wt, tZO
0

Here b is a Borel d-dimensional bounded function, W; — d-dimensional Wiener process. We consider a
strong solution, that is, X; € FtW forany ¢t > 0.

Sub-exponential mixing bounds are used in the asymptotic analysis of diffusion processes, in particular,
they are useful in moderate deviation theorems.

Sub-exponential convergence were studied in [/1]], sub-exponential mixing bounds in [4].

The method we use was suggested in [|6] for studying polynomial mixing and convergence bounds, and
then adjusted for sub-exponential case in [4]; we give better bounds under same conditions in compare to
the latter paper; the essential novelty is that when p — 0, one can choose « and (3 arbitrarily close to 1 (see
below), i.e. the bounds are approaching exponential ones.

Mixing bounds for Markov processes are based on analysis of recurrence properties. This is the area
where very essential results were established by V. V. Kalashnikov [2]], [13]].

2. MAIN RESULT
We assume that
(Hp) (b(x),z/|x|) < —rlz|™?, 0<p<1,r>0.

The value p = 0 corresponds to exponential (see [5]]), and p = 1 to polynomial beta-mixing (see [|6]])
Below pf is the law of X;, p is its invariant measure, var is the total variation metric, 7 = inf(t > 0
| X¢| < M), and

B*(t) = sup Epvary

X
>0 Ztts

(P(B|FZ,) = P(B)).

! To the memory of V. V. Kalashnikov.
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Theorem. Let (Hy) hold true, 3 < 1 —p, o < /(1 + p). Then there exist positive constants ¢y — cs,
and M large enough such that

a 5
B < co(1 4 2127,

g g
sup Epe®!Xl” < (1 + el
>0

var(if — 1) < co(1 + el emeot”,
BF < co(1 4 ey emest”,

3. METHOD

We use “quasi-Lyapunov functions” exp(c(1 + t)*)(1 + )~ (=) exp(c/| X¢|7).
This term means that the Lyapunov property is “almost satisfied”; the remainder possesses a bound
sufficient to show sub-exponential recurrence.
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