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The splitting and Russian roulette approach, suggested by von Neumann [1], is one of possible ways to
increase the efficiency of stochastic computer simulation of random processes. The idea of the approach
consists in a parallel simulation of several independent paths of a random process corresponding to the
behavior of a complex system number investigation. To each path procedures of splitting and roulette are
applied. In most versions described in the literature (see, f.e., [2] or [3]) strong restrictions on transition
probabilities are assumed. However, in [4] a more general technique was introduced and a corresponding
mathematical theory was developed. The present paper is devoted to a brief review of the theory for the case
of simulating finite Markov chains. We also suggest an illustrating example.

Let us consider a finite Markov chain with the state space 2 = {0, 1,...,m}, a transition matrix P and a
stationary distribution m = (7, .. ., T, )" . Assume that for an integer number N all elements of the matrix
PN are positive. The problem is to evaluate the vector 7 by simulation.

As the immediate simulation method we will consider the well known regenerative approach [5]. Let
{i*} be the initial state. The method consists in the simulation of several paths of the chain beginning in
{#*} till return to this state. As the estimator of 7r; (¢ = 0, 1, ..., m) the number of hits to the state {i} by all
paths divided by the number of all steps by all paths is used.

To describe the branching technique which is a formalization of the splitting and roulette approach let us
introduce the notion of experimental design.

Let 5o, . .., Bm be arbitrary fixed nonnegative numbers and it is possible that 3; = 0 if the state {i} is a
state in which every path will be cancelled.

When a path transits from a state 7 to a state j, i € §, j € Q\{i*} when §; < §; we will simulate
additionally n paths beginning in the state j where

|8;/53:] — 1 with a probability 1 — «
| 18;/B:] withaprobability a,
o = B;/Bi — | Bi/B:] and |a| designates the integer part of a. When 3; < [3; we will cancel the current path
with the probability 3;/3;. As the estimator of 7 (k = 0,1, ..., m) we will take the number of hits into the

state & by all path multiplied by 35 and divided by the sum of all such numbers. One of 3 could be equal
toOsince mp, =1 — Z#k m; and one of the 7r; could be recalculated by others.

We will call experimental design the discrete probability measure 7 = {79,..., 7}, i > 0 (i =

0,...,m), > 7 =1, where
Ti = @m/Zﬁka-
k=0

In [4] it was proved that the estimators are asymptotically unbiased and the covariance matrix of the
estimators of (71, ..., m,) multiplied by all steps is approximately equal

D(r)=WTB(r)W, W =(I—-P)},
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where P_is the matrix P with the first row and the first column rejected,

=

m—1

i

B(t) = E o By, Br = (Pridij — DriPkj)ij=1>
5=0

0;; = 1for i = jand d;; = 0 for i # j.

The immediate simulation method is a particular case when 3y = 51 = ... = (O, thatis 7 = 7. The natural
efficiency criterion for the problem is the determinant of D(7). Since W does not depend on 7 the criterion
is reduced to detB(7).

A design 7* will be called D-optimal design if it minimizes the magnitude of detB (7).

Consider a particular case of the Markov chain embedded into the random process, corresponding to the
length of queue with one server and m places for waiting. We will consider the simplest case when the input
stream is a simplest stream and the time of service is an exponentially distributed random value.

Let p be the load of the system. Then the matrix P is of the form

0 1 00...
1-A 0 AO
0 1-A0A
P=1 . A =p/(1+p),
1-A 0 A
0 1-AA

= Amg, Tig1 = pAmg, i =1,....m—1,mo=1/(1+ A+ Ap+...+Ap™ 1.
We can calculate by induction that

m 7-(.2
detB(7) = = 1 A™(1-A)™.
ctB(r) (H ) (1-4)
From here we found that the D-optimal design is 7% = {O, %, ce %} and

detB(r\ Y™ (o T
™ (detB(7)> <Hl i ) / "
with 7 = 7. Note that /(7) is a natural measure of efficiency of the design 7. It means the ratio of the

number of steps needed by immediate simulation for obtaining results with a given accuracy to the respective
number for the splitting and roulette approach. In table 1 values of the efficiency are given.

Table 1. Values of I.

515|510 10 | 10
1213 |1/4(1/2] 1/3 | 1/4
20[4.0|6.8|6.0(31.6]|109

~ (3

We can conclude that the technique is very powerful in this case. For practical implementation the optimal
values 3; = 1/7;, j # 0 could be evaluated through the current simulation results in the style of sequential
approach. As the initial state we can take {i*} = {1}.

We can offer to use the design 7* for the more complicated chains, simulation whereas the efficiency
could be evaluated numerically.
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