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We discuss new possibilities which the weakly regenerative approach (when a dependence between two
adjacent regeneration cycles is allowed) opens in modeling and simulation of queueing network processes.
First we extend the class of regenerative inputs constructing weak regeneration for a superposition of

n independent, stationary renewal processes in which case generally, classical regeneration does not exist.
We assume that process i is generated by the i.i.d. interrenewal times {ξ(i)

n }n with d.f. Fi and expectation
ai ∈ (0,∞), i = 1, . . . , n. Let ξi(t), (ξ̃i(t)) be right-continuous unfinished (attained) renewal time at instant
t in the renewal process i. By the stationarity,

P(ξi(t) ≤ x) = P(ξ̃i(t) ≤ x) =
1
ai

∫ x

0
(1− Fi(u))du,

for all i, t ≥ 0, x ≥ 0. Fix arbitrary a > 0 such that mini(1 − Fi(a)) > 0, and introduce an increasing
sequence of the instants

T
(a)
0 = 0, T

(a)
n+1 = inf

t≥0

(
t : t ≥ T (a)

n , ξi(t) ≤ a, i = 1, . . . , n
)

+ a, n ≥ 0.

Define Markov process ξ(t) =
(
ξ1(t), . . . , ξn(t)

)
and let

G(a)
n =

{
ξ(t) : T (a)

n ≤ t < T
(a)
n+1; T

(a)
n+1 − T (a)

n

}
, n ≥ 0.

We show that instants {T (a)
n } form an embedded renewal process of weak regeneration points of the

process ξ = {ξ(t), t ≥ 0} with one-dependent regeneration cycles {G(a)
n } and the i.i.d. cycle lengths

{T (a)
n+1 − T

(a)
n , n ≥ 0}. Let ξi(T

(a)
m ) = ξ

(i)
m , ξm = (ξ(1)

m , . . . , ξ
(n)
m ), m ≥ 0.

It is shown that distribution of ξm (regeneration measure) has the formH(a) =
∏

i H
(a)
i and independent

of the sequence {T (a)
n } and indexm. At that marginal distributions

H
(a)
i (x) = P(ξ(i)

m ≤ x) =

∫ a
0 (Fi(x + y)− Fi(y))dy∫ a

0 (1− Fi(x))dx
, i = 1, . . . , n.

In particular, it then follows that we need not randomization based on the splitting technique to construct
(weak) regeneration for the superposition of stationary renewal processes, see [2], [12].
1 This work is supported by the Russian Foundation for the Basic Research under Grant 01-07-90259.
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By analogy, we construct a weakly regenerative structure for the multi-dimensional workload process
describing a multiserver queue GI/G/m/0 with losses and a queue GI/G/∞ with infinite number of
servers.
These new constructions of regenerative queueing processes lead to the necessity to analyze (regenerative)

queues and networks with a weakly regenerative input. In this regard, we discuss an approach to stability
of such processes based on a characterization of a renewal process by means of the limit behaviour of the
unfinished renewal time and an "unloading"procedure, [4]. Then we touch upon the decomposition of this
class of the regenerative networks (this problem was discussed in [3] for a narrower class of the networks).
Also we consider a simulation aspect. The great advantage of the regenerative approach is based on

a possibility to apply (in a modified form) well-developed procedures of classical statistics to correlated
data, [5], [6], [10],[11].
In the typical network setting a regeneration event occurs if the network process hits zero (under classical

regeneration) or a neighborhood of zero (under weak regeneration), [6].
Although confidence intervals based on different types of regeneration points are asymptotically equiv-

alent, the difference in required simulation time is often crucial for the efficiency of simulation proce-
dure, [5], [7], [8], [10], [11]. The regenerative approach first was applied to simulation of the stochastic
systems where the frequency of classical regeneration points was sufficient to estimate the process character-
istics in acceptable simulation time, [10], [11]. But in modern communication networks such points occur as
a rule too rarely, or not at all, which precludes their use in actual simulation. We discuss the conditions when
weakly regenerative simulation of a queueing network is extremely effective (whereas classical regeneration
is not). This new approach turns out to be especially useful for a large network with moderate/light traffic
rates. Moreover, in a weak regeneration case monotonicity of some important network processes (workload,
sojourn time) allows to increase estimation precision based on the specific variance reduction technique, [7].
We discuss also a possibility to apply the regenerative simulation to estimate the steady-state characteris-

tics of some long-range dependent queueing processes. It is known that waiting time sequence {Wn} in the
stationary queue GI/G/1 with service time S and interarrival time τ is long-range dependent i.e.

∞∑
n=1

cov(W0,Wn) =∞,

if
Eτ <∞, ES3 <∞, ES4 =∞,

see [9]. At the same time, under these assumptions the busy period length α is such that Eα3 < ∞. This
implies that unfinished renewal time α̃ at instant t (time until next regeneration point under stationarity) has
finite second moment, and hence,

P(α̃ > x) = o(x−2) as x→∞. (1)

We note that the same assumption ES3 < ∞ implies finiteness of the 3-rd moment of the idle period
which is included in regeneration cycle length.
It follows that the regenerativemethod can be successfully applied for the actual simulation and estimation

of the long-range dependent waiting time process. We conjecture that these observations hold true for a wider
class of queueing processes and give a new promising opportunity for the application of the regenerative
approach to analyze modern communication networks.
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