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1. INTRODUCTION

The problem of optimal jobs assignment to heterogeneous servers arises in many applications.
The problem of optimal jobs assignment for two heterogeneous servers with respect to minimization
of long run average mean number jobs in the system was considered in [1], where it was shown that
the policy, which minimizes the number of customers in the system, has a threshold property and
consists in using the fastest server if necessary. For the multi-server system, these properties of an
optimal policy were generalized in [2].

In the talk, an algorithm is proposed which gives the possibility to find optimal threshold levels
for different values of system parameters and investigate their behavior. Some numerical examples
are also included.

2. THE PROBLEM

Consider an M/M/K/N −K (K ≤ N < ∞) controllable queuing system with K heterogeneous
exponential servers of intensities µk (k = 1,K), N −K places in the buffer, and a Poisson input of
jobs with the intensity λ. At the arrival times, the control consists in sending the arrived job to one
of the idle servers, or to the queue (if it is not full). At the service completion times, the control
consists in sending or not a job from the queue (if it is not empty) to some of the idle servers. Thus,
any job is rejected only in the case if at the time of its arrival the buffer is full and all servers are
busy. Being sent to some server a job cannot change it. The problem consists in minimizing the
long run average mean number of jobs in the system.

3. THE MODEL

For modeling of the system operation, consider the controllable process {Z(t)} = {(X(t), U(t))}
with the observed process {X(t)} = {(Q(t),D(t))} and controlling process {U(t)}. Here Q(t) is the
queue length at time t, and D(t) = (D1(t), . . . ,DK(t)) describes the states of the servers at this
time, Di(t) = 0 or 1 depending on the idle or busy i-th server. The states space of the observed
process is E = N × {0, 1}K with the set N = {0, 1, . . . , N − K}. The decision set A consists of
K + 1 elements, i.e. A = {0, 1, . . . ,K}, and the decision ”0” denotes not to occupy any server
(send the arrived job to the queue), while the control ”k” denotes to send the next job on the k-th

1 The paper was partially supported by the RFBR Grants No. 99-01-00034 and No. 01-07-90259.



NUMERICAL ANALYSIS OF OPTIMAL CONTROL POLICIES 253

server. Denote also by L(t) = Q(t) +
∑

1≤k≤K Dk(t) the random process of the number of jobs in
the system.

For each state x = (q, d1, . . . , dK) denote by d(x) =
∑

1≤k≤K dk the number of busy servers,
by l(x) = q(x) + d(x) the number of jobs in the system, by J0(x) and J1(x) the sets of busy and
idle servers respectively, J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}, and by M0(x) =∑

j∈J0
µj , and M1(x) =

∑
j∈J0

µj the total service intensities of the idle and busy servers.
Notice that the decision depends on the state of the observable component and the decision set

A(x) at the state x equals A(x) = {0} ∪ J0(x).
Under the considered assumptions, the process {Z(t)} = {(X(t), U(t))} is a Markov decision

one with transition intensities

λxy(a) =




λ, for y = x + ea,

µj, for y = x − ej + 1{q(x>0}(−e0 + ea), j ∈ J1(x),
0, otherwise,

where ei = (0, . . . , 1, . . . , 0) denotes the K + 1-dimensional vector, the i-th component of which
(beginning from 0-th) is one and all others are zeros.

As usual (see, for example, [3]) define a strategy δ, the probability distribution Pδ
x of the process

{Z(t)} given the initial state x and strategy δ, the expectation Eδ
x with respect to this probability

distribution. Then in mathematical terms the problem can be represented as follows: minimize with
respect to all admissible strategies the following expression

g(x; δ) = lim
t→∞

1
t
Eδ

x

∫ t

0
L(u) du.

4. THE OPTIMALITY EQUATION

As is well known (see, for example [3]) for a Markov decision problem with respect to the long run
average minimization criterion an optimal strategy is a stationary Markov one, i.e. it is determined
by the optimal policy f = {f(x) : x ∈ E} which can be found from optimality equations for the
process as a minimizer of its right hand. The optimality equations for the considered model can be
obtained by usual methods and have a form (see [2])

v(x) = l(x) + λ min
k∈A(x)

v(x + ek) +
∑

j∈J1(x)

µj [1{q(x)=0}v(x − ej) +

+ 1{q(x)>0} min
k∈A(x−ej−e0)

v(x − ej − e0 + ek)] − g, (1)

where g = infδ g(x, δ) and v = {v(x) :, x ∈ E} are the so called gain and value functions of the
model, which are determined by these equations, being last one up to some constant.

From these equations, one can see that the function to be minimized, to which we will refer as
a Bellman function, can be represented in the form

b(x, k) = v(x + ek), k ∈ A(x). (2)

Based on the optimality equations (1) and the Bellman function of the model (2), the following
results were proved in [2]:

Theorem. For the system under consideration an optimal policy is of a threshold type, i.e. for
each state x, there exists some level of the queue length q∗(x) (depending on the collection of busy
servers J1(x)) such that it is necessary to occupy some server only if q > q∗(x); in this case the
fastest of idle servers should be occupied. On the other hand, if in some state x the optimal decision
is to allocate a job to the queue then the same decision is optimal for all y with q(y) ≤ q(x) and
the same collection of busy servers J1(y) = J1(x).
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5. AN ALGORITHM

The previous theorem describes only qualitative properties of the optimal policies. For the op-
timal threshold level calculation, an algorithm can be proposed. This algorithm is based on the
Howard’s iteration approach ([4]) and takes into account some specific properties of the problem.
The algorithm consists of two general steps: Policy Evaluation, and Policy Improvement. To trans-
form multidimensional massifs into a one-dimensional one, the following numeration of the states
is used, where numbers are denoted by the same letter as the state,

#(x) = q · 2K +
∑

1≤k≤K

2kdK+1−k ≡ x, x = 0, I − 1 with I = (N − K) · 2K

It is necessary to remind that only the relative value function v = {v(x) : x ∈ E} can be found from
these equations. It means that one of v(x) has to be fixed as zero, for example. In the algorithm
below we put v(0) = 0. The principal steps of the algorithm are shown below.

Policy Evaluation.

For a given policy fn = {fn(x) : x = 0, I − 1} solve the equations (1) with respect to gn and
vn = {vn(x) : x = 0, I − 1} with a given accuracy ε putting vn(0) = 0.

Policy Improvement.

For a given solution gn and vn = {vn(x) : x = 0, I − 1} find a new policy fn+1 = {fn+1(x) :
x = 0, I − 1}, which minimizes the Bellman function of the model (2), with

fn+1(x) = argmin{vn(x + ek) : k ∈ A(x)}.

The Algorithm stops when two successive approximation of policies coincide.

6. EXAMPLES

Some numerical examples were calculated with the help of routine, followed by the algorithm.
In these examples the system with K = 3 servers, buffer N − K = 10 is considered. The service
intensities µk (k = 1, 2, 3), and the input intensity λ were varied. The results of the optimal poli-
cies calculations are summarized in the diagrams, shown in figures 1 – 3, where changing of the
thresholds levels for the second (pictures labeled by letter ’a’) and third (pictures labeled by letter
’b’) servers as functions of the first service intensity, µ1, for different values of the second service
intensity, µ2 = {0.1; 0.2; 0.3; 0.4; 0.5}, and different values of the input intensity λ = {1; 0.5; 0.1}
are shown. Corresponding curves are marked by the labels {1; 2; 3; 4; 5}.

The pictures show that the optimal policies really have a threshold property, and also they show
that the optimal threshold levels of both servers monotonously increase with increasing service
intensities of the first server, but the threshold levels of the third server decrease with the increase
of the second service intensity. They show also an increase in the threshold levels of both servers
when the input intensity decreases.
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Fig.1. The threshold levels for second (a) and third (b) servers as functions of the first service
intensity, µ1, for different values of the second service intensity, µ2, and the value of the input
intensity λ = 1.
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Fig.2. The threshold levels for second (a) and third (b) servers as functions of the first service
intensity, µ1, for different values of the second service intensity, µ2, and the value of the input
intensity λ = 0.5. (a)
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Fig.3. The threshold levels for second (a) and third (b) servers as functions of the first service
intensity, µ1, for different values of the second service intensity, µ2, and the value of the input
intensity λ = 0.1.
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