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Let Sy = vaztl Y; be the aggregate claims process, where {V;} is a Poisson process with rate A. The
claim sizes {Y;} are iid, strictly positive and independent of the claim arrival process. We denote by Y
a generic random variable, by My (r) = E[exp{rY}] its moment generating function and by G(y) its
distribution function. The insurer follows a strategy (A(u),b(u)) of feedback form, where (A(u),b(u)) €
A C [0,00) x [0,1]. The following cases have been investigated in [[1,12}3]:

A =1[0,00) x {1}, no reinsurance,
A={0} x[0,1], no investment,
A =10,00) x [0,1], investment and reinsurance

where A(u) denotes the amount invested into a risky asset, modelled as a geometric Brownian motion
dZt = ,U,Zt dt + O'Zt th s

{W4} is a standard Brownian motion independent of {S;} and b(u) is the retention level in proportional
reinsurance, i.e. if a claim Y occurs at the time where the surplus is u (before the claim payment) then the
insurer pays b(u)Y and the reinsurer pays (1 — b(w))Y'. For this reinsurance cover the insurer has to pay a
continuous premium at rate ¢(b(u)). As in [3]] we assume that ¢(b) is strictly decreasing, ¢(1) = 0, and that
¢ < ¢(0) < oo, where c is the rate at which the insurer receiver premiums.

Under the chosen strategy the surplus process X is given by
CLXtL = (C - C(b(Xt)) + ,LLA(Xt)) dt + UA(Xt) th - b(Xt_) dSt > Xo =Uu.

The time of ruin is 7% = inf{t > 0 : X; < 0}, and the ruin probability is 1»*(u) = PP[r4* < oc]. The
control function is ¢(u) = inf 4 9*(u). In order that 1)(u) < 1 we have to assume that ¢ > ME[Y] in the
case without investment. If investment is possible the positive safety loading can be achieved by investment.

As in [1,2,[3] we suppose that ¢)(u) is twice continuously differentiable. Then v (u) solves the Hamilton-
Jacobi-Bellman equation

Lant 30P AR () + (e = e(b) + pAYY () + B[ (u — BY)] = () =0,

where we let ¢(u) = 1 for u < 0. The optimal strategy (A(u), b(w)) are the values of A, b in the Hamilton-
Jacobi-Bellman equation for which the infimum is taken.

Let R(A,b) be the solution to

A(My (br) — 1) — (¢ — ¢(b) + pA)r + %02A2r2 =0,
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and R = sup(4 p)c4 R(A, ). Let (A%, b*) denote the parameters at which the supremum is attained.
We first consider the small claim case. The process

M, = exp{—R(XTAt ) — /OT 0(X,) ds} ,
is a martingale where
O(u) = MMy (b(u)R) — 1) — (c — c(b(u)) + pA(u))R + 30°A*(u)R?.

Define the measure IP*[A] = IE[M;; A] on F;. Then IP*[7 < oo] = 1 and
P(u) = IE* [exp{RXr + / H(Xs)H e e
0

Upper and lower Lundberg bounds can be obtained. Let ¢ = lim sup t(u)ef®. Then we show that for any
e,n > 0 there is an interval [up — n,uo] on which [1(u)ef* — (| < . Using this the change of measure
formula yields convergence of 1(u)e ™%, Further considerations then imply that A(u) — A* and b(u) — b*
as u — o0.

Suppose now My (r) = oo for all 7 > 0 and that investment is possible. Then we show that v (u)ef**
converges, possibly to zero. Moreover, w(u)e(R+5)“ = oo for all € > 0. The strategy also converges,
b(0) — b* = 0 and A(u) — A* < 0o as u — o0o. Moreover, if liminf, .o b~ 1(c(0) — ¢(b)) > AE[Y], we
find that b(u) > 0 for all .
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