
Информационные процессы, Том 2, № 2, 2002, стр. 259–261.
c© 2002 Serfozo.

KALASHNIKOV MEMORIAL SEMINAR

Reversible Markov Processes
on General Spaces:

Spatial Birth-Death and Queueing Processes
R.F. Serfozo

School of Industrial and Systems Engineering,
Georgia Institute of Technology,

Atlanta, GA 30332.
email: rserfozo@isye.gatech.edu

Received October 14, 2002

The first part of this study characterizes several properties of a reversible Markov jump process X ≡
{Xt : t ≥ 0} on a general measurable space (E, E) with transition rate kernel q(x,A). The process (or the
kernel q) is reversible reversible with respect to π, if π is a measure on IE such that

π(dx)q(x dy) = π(dy)q(y dx).

Reversibility was introduced by Kolmogorov; see the review [1] and its applications to queueing in
[3, 6, 8], which are for processes on countable state spaces. We present a canonical representation of the
stationary distribution of X on a general state space. This involves representing two-way communication
by certain Radon-Nikodym derivatives for measures on product spaces, using a result from [7]. This is not
needed for classical processes on discrete spaces or for kernels with with density functions (e.g., q(x dy) =
r(x, y)µ(dx)). Included is a Kolmogorov criterion that establishes the reversibility of ψ-irreducible Markov
jump processes [5].
The second part of the study derives stationary distributions for two classes of reversible measure-valued

Markov processes:
(1) Spatial birth-death processes with single and multiple births and deaths (the total population is never
infinite, which is different from infinite-population systems [2, 4]).
(2) Spatial queueing systems in which customers move in a space where they receive services, analogous to
services in queueing networks [3, 6, 8].
Sufficient conditions for ergodicity of spatial queues are also presented.
The following is the main result for a spatial birth-death process. Consider a system in which discrete

units enter a measurable space (IE, E) for processing and then leave the space. We represent the state of the
system over time by a Markov jump process X = {Xt : t ≥ 0} with state space (IN,N ), the space of all
finite counting measures ν on IE. That is, X is a measurable map from a probability space to (IN,N ), and
Xt(A) is the random number of units in A ∈ E at time t. Whenever the process X is in a state ν, the time
to the next potential arrival (birth) from the outside into the set A ∈ N is exponentially distributed with
birth-rate kernel λ(ν,A), where supν∈IN λ(ν, IE) < ∞. Also, for each unit located at x ∈ IE, the time to
its departure (death) is exponentially distributed with death rate γ(ν, x), which is positive when ν(dx) > 0.
Then X is a Markov jump process with transition rate kernel

q(ν, C) =
∫

IE
λ(ν, dx)1(ν + δx ∈ C)

+
∫

IE
ν(dx)γ(ν, x)1(ν − δx ∈ C), ν ∈ IN, C ∈ N . (1)
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The following result characterizes the reversibility ofX in terms of the measuresHn on IEn defined by

Hn(dx1 · · · dxn) ≡ 1
n!

n∏
k=1

γ(νk, xk)−1λ(νk−1, dxk), (2)

where ν0 = 0 and νk ≡
∑k

i=1 δxi .

Theorem 1. The Markov processX with transition rate kernel (1) is reversible with respect to a measure
with an atom at 0 if and only if

Hn(dx1 · · · dxn) = Hn(dx′1 · · · dx′n), (3)

for any permutation x′1 · · ·x′n of x1 · · ·xn and n ≥ 1. In this case, X is reversible with respect to

π(C) =
∞∑

n=0

∫
IEn

Hn(dx1 · · · dxn)1(
n∑

i=1

δxi ∈ C), C ∈ N , (4)

where the term in the sum for n = 0 is 1(0 ∈ C).

Wenowdescribe a spatial queueing system inwhich ameasure-valuedMarkov processX ≡ {Xt : t ≥ 0}
as above represents the locations of units (customers) that move in the space IE where they are processed.
The X jumps from the state ν to the state

Txyν ≡ ν − δx + δy ∈ IN,

when a unit at x moves to the location y. Here δ0 = 0 when x = 0, and ν({x}) > 0 when x ∈ IE. We
assume that the transition rate kernel for the process is

q(ν, C) =
∫

IE
r(ν, T0yν)λ(0, dy)1(T0yν ∈ C) (5)

+
∫

IE×IE
r(ν, Txyν)λ(x, dy)1(Txyν ∈ C), ν ∈ IN, C ∈ N . (6)

Here r(ν, Txyν) is a departure-attraction rate at which a unit tends to depart from x and be attracted to y.
This is analogous to a service and attraction rate in queueing networks. The λ(x, dy) is a Markovian routing
kernel as above with stationary distribution α. The multiplication r(ν, Txyν)λ(x, dy) or compounding is
similar to the compounding of service and routing rates in Jackson networks.
We assume that λ and r(ν, Txyν) are such that q(ν, IN) is finite and the process is regular. These conditions

are true if
sup
x∈IE

∫
IE
r(ν, Txyν)λ(x, dy) <∞.

As invariant measure for the processX is generally not tractable, but it is tractable whenX is reversible.
For this we assume that routing kernel λ(x,A) on IE is reversible with respect to α.

Theorem 2. If f(ν)r(ν, η) is symmetric for some positive function f on IN, then X is reversible with
respect to π(dν) = f(ν)πα(dν), where πw is the Poisson distribution with intensity α:

πα(C) = e−α(IE)[1(0 ∈ C) +
∞∑

n=1

∫
IEn

1
n!
α(dx1) · · ·α(dxn)1(

n∑
k=1

δxk
∈ C)], C ∈ N .

Example 1. Consider the process with departure-attraction rate

r(ν, Txyν) =
u(ν − δx)
u(ν)

v(ν + δy)
v(ν)

,

where u and v are positive functions. The first ratio is the rate at which a unit at x departs from its location,
and the second ratio is the rate at which a unit is attracted to the location y. In this case, u(ν)v(ν)r(ν, η) is
symmetric, and hence X is reversible with respect to π(dν) = u(ν)v(ν)πα(dν).
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