KALASHNIKOV MEMORIAL SEMINAR

Reversible Markov Processes on General Spaces: Spatial Birth-Death and Queueing Processes

R.F. Serfozo

School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332. email: rserfozo@isye.gatech.edu Received October 14, 2002

The first part of this study characterizes several properties of a reversible Markov jump process $X \equiv \{X_t : t \ge 0\}$ on a general measurable space (E, \mathcal{E}) with transition rate kernel q(x, A). The process (or the kernel q) is reversible *reversible* with respect to π , if π is a measure on \mathbb{E} such that

$$\pi(dx)q(x\,dy) = \pi(dy)q(y\,dx).$$

Reversibility was introduced by Kolmogorov; see the review [1] and its applications to queueing in [3, 6, 8], which are for processes on countable state spaces. We present a canonical representation of the stationary distribution of X on a general state space. This involves representing two-way communication by certain Radon-Nikodym derivatives for measures on product spaces, using a result from [7]. This is not needed for classical processes on discrete spaces or for kernels with with density functions (e.g., $q(x dy) = r(x, y)\mu(dx)$). Included is a Kolmogorov criterion that establishes the reversibility of ψ -irreducible Markov jump processes [5].

The second part of the study derives stationary distributions for two classes of reversible measure-valued Markov processes:

(1) Spatial birth-death processes with single and multiple births and deaths (the total population is never infinite, which is different from infinite-population systems [2,4]).

(2) Spatial queueing systems in which customers move in a space where they receive services, analogous to services in queueing networks [3, 6, 8].

Sufficient conditions for ergodicity of spatial queues are also presented.

The following is the main result for a *spatial birth-death process*. Consider a system in which discrete units enter a measurable space $(\mathbb{E}, \mathcal{E})$ for processing and then leave the space. We represent the state of the system over time by a Markov jump process $X = \{X_t : t \ge 0\}$ with state space $(\mathbb{N}, \mathcal{N})$, the space of all finite counting measures ν on \mathbb{E} . That is, X is a measurable map from a probability space to $(\mathbb{N}, \mathcal{N})$, and $X_t(A)$ is the random number of units in $A \in \mathcal{E}$ at time t. Whenever the process X is in a state ν , the time to the next potential arrival (birth) from the outside into the set $A \in \mathcal{N}$ is exponentially distributed with birth-rate kernel $\lambda(\nu, A)$, where $\sup_{\nu \in \mathbb{N}} \lambda(\nu, \mathbb{E}) < \infty$. Also, for each unit located at $x \in \mathbb{E}$, the time to its departure (death) is exponentially distributed with death rate $\gamma(\nu, x)$, which is positive when $\nu(dx) > 0$. Then X is a Markov jump process with transition rate kernel

$$q(\nu, C) = \int_{\mathbb{E}} \lambda(\nu, dx) \mathbf{1}(\nu + \delta_x \in C) + \int_{\mathbb{E}} \nu(dx) \gamma(\nu, x) \mathbf{1}(\nu - \delta_x \in C), \quad \nu \in \mathbb{N}, \ C \in \mathcal{N}.$$
 (1)

Serfozo

The following result characterizes the reversibility of X in terms of the measures H_n on \mathbb{E}^n defined by

$$H_n(dx_1\cdots dx_n) \equiv \frac{1}{n!} \prod_{k=1}^n \gamma(\nu_k, x_k)^{-1} \lambda(\nu_{k-1}, dx_k),$$
(2)

where $\nu_0 = 0$ and $\nu_k \equiv \sum_{i=1}^k \delta_{x_i}$.

Theorem 1. The Markov process X with transition rate kernel (1) is reversible with respect to a measure with an atom at 0 if and only if

$$H_n(dx_1\cdots dx_n) = H_n(dx'_1\cdots dx'_n), \tag{3}$$

for any permutation $x'_1 \cdots x'_n$ of $x_1 \cdots x_n$ and $n \ge 1$. In this case, X is reversible with respect to

$$\pi(C) = \sum_{n=0}^{\infty} \int_{\mathbb{E}^n} H_n(dx_1 \cdots dx_n) 1(\sum_{i=1}^n \delta_{x_i} \in C), \quad C \in \mathcal{N},$$
(4)

where the term in the sum for n = 0 is $1(0 \in C)$.

We now describe a *spatial queueing system* in which a measure-valued Markov process $X \equiv \{X_t : t \ge 0\}$ as above represents the locations of units (customers) that move in the space \mathbb{E} where they are processed. The X jumps from the state ν to the state

$$T_{xy}\nu \equiv \nu - \delta_x + \delta_y \in \mathbb{N},$$

when a unit at x moves to the location y. Here $\delta_0 = 0$ when x = 0, and $\nu(\{x\}) > 0$ when $x \in \mathbb{E}$. We assume that the transition rate kernel for the process is

$$q(\nu, C) = \int_{\mathbb{E}} r(\nu, T_{0y}\nu)\lambda(0, dy) \mathbf{1}(T_{0y}\nu \in C)$$
(5)

$$+\int_{\mathbb{E}\times\overline{\mathbb{E}}}r(\nu,T_{xy}\nu)\lambda(x,dy)\mathbf{1}(T_{xy}\nu\in C),\quad\nu\in\mathbb{N},\ C\in\mathcal{N}.$$
(6)

Here $r(\nu, T_{xy}\nu)$ is a *departure-attraction* rate at which a unit tends to depart from x and be attracted to y. This is analogous to a service and attraction rate in queueing networks. The $\lambda(x, dy)$ is a Markovian routing kernel as above with stationary distribution α . The multiplication $r(\nu, T_{xy}\nu)\lambda(x, dy)$ or compounding is similar to the compounding of service and routing rates in Jackson networks.

We assume that λ and $r(\nu, T_{xy}\nu)$ are such that $q(\nu, \mathbb{N})$ is finite and the process is regular. These conditions are true if

$$\sup_{x\in\overline{\mathbb{E}}}\int_{\overline{\mathbb{E}}}r(\nu,T_{xy}\nu)\lambda(x,dy)<\infty.$$

As invariant measure for the process X is generally not tractable, but it is tractable when X is reversible. For this we assume that routing kernel $\lambda(x, A)$ on \mathbb{E} is reversible with respect to α .

Theorem 2. If $f(\nu)r(\nu,\eta)$ is symmetric for some positive function f on \mathbb{N} , then X is reversible with respect to $\pi(d\nu) = f(\nu)\pi_{\alpha}(d\nu)$, where π_w is the Poisson distribution with intensity α :

$$\pi_{\alpha}(C) = e^{-\alpha(\mathbb{E})} [1(0 \in C) + \sum_{n=1}^{\infty} \int_{\mathbb{E}^n} \frac{1}{n!} \alpha(dx_1) \cdots \alpha(dx_n) 1(\sum_{k=1}^n \delta_{x_k} \in C)], \quad C \in \mathcal{N}.$$

Example 1. Consider the process with departure-attraction rate

$$r(\nu, T_{xy}\nu) = \frac{u(\nu - \delta_x)}{u(\nu)} \frac{v(\nu + \delta_y)}{v(\nu)}$$

where u and v are positive functions. The first ratio is the rate at which a unit at x departs from its location, and the second ratio is the rate at which a unit is attracted to the location y. In this case, $u(\nu)v(\nu)r(\nu,\eta)$ is symmetric, and hence X is reversible with respect to $\pi(d\nu) = u(\nu)v(\nu)\pi_{\alpha}(d\nu)$.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 2 № 2 2002

260

REFERENCES

- Dobrushin, R. L., Sukhov, Yu. M., and I. Fritts (1988). A. N. Kolmogorov—founder of the theory of reversible Markov processes. (Russian) Uspekhi Mat. Nauk 43 167–188; translation in Russian Math. Surveys 43 (1988) 157–182.
- Lopes Garcia, N. (1995). Birth and death processes as projections of higher-dimensional Poisson processes. *Adv. in Appl. Probab.*, 27, 911–930.
- 3. Kelly, F. P. (1979). Reversibility and Stochastic Networks. John Wiley, London.
- 4. Gløtzl, E. (1981). Time reversible and Gibbsian point processes. I. Markovian spatial birth and death processes on a general phase space. *Math. Nachr.*, **102**, 217–222.
- 5. Meyn, S. P. and R. L. Tweedie (1993). *Stationary Markov Chains and Stochastic Stability*. Springer-Verlag, New York.
- 6. Serfozo, R. F. (1999). Introduction to Stochastic Networks. Springer-Verlag, New York.
- 7. Tierney, L. (1998). A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Probab., 8, 1-9.
- 8. Whittle, P. Systems in Stochastic Equilibrium. New York: Wiley, 1986.