Hngpopmayuonnwvie npoyeccwi, Tom 2, Ne 2, 2002, cmp. 259-261.
© 2002 Serfozo.

KALASHNIKOV MEMORIAL SEMINAR

Reversible Markov Processes
on General Spaces:
Spatial Birth-Death and Queueing Processes

R.F. Serfozo

School of Industrial and Systems Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332.
email: rserfozo@isye.gatech.edu
Received October 14, 2002
The first part of this study characterizes several properties of a reversible Markov jump process X =
{X; : t > 0} on a general measurable space (F, £) with transition rate kernel ¢(x, A). The process (or the
kernel q) is reversible reversible with respect to m, if 7 is a measure on IE such that

m(dz)q(x dy) = 7(dy)q(y dz).

Reversibility was introduced by Kolmogorov; see the review [1]] and its applications to queueing in
[13,16,/8]], which are for processes on countable state spaces. We present a canonical representation of the
stationary distribution of X on a general state space. This involves representing two-way communication
by certain Radon-Nikodym derivatives for measures on product spaces, using a result from [|7|]. This is not
needed for classical processes on discrete spaces or for kernels with with density functions (e.g., ¢(x dy) =
r(z,y)u(dz)). Included is a Kolmogorov criterion that establishes the reversibility of ¢-irreducible Markov
jump processes [5]].

The second part of the study derives stationary distributions for two classes of reversible measure-valued
Markov processes:

(1) Spatial birth-death processes with single and multiple births and deaths (the total population is never
infinite, which is different from infinite-population systems [2,/4]).

(2) Spatial queueing systems in which customers move in a space where they receive services, analogous to
services in queueing networks [131/6,8]].

Sufficient conditions for ergodicity of spatial queues are also presented.

The following is the main result for a spatial birth-death process. Consider a system in which discrete
units enter a measurable space (IE, £) for processing and then leave the space. We represent the state of the
system over time by a Markov jump process X = {X; : ¢ > 0} with state space (IN, '), the space of all
finite counting measures v on IE. That is, X is a measurable map from a probability space to (IN, /), and
X (A) is the random number of units in A € £ at time ¢. Whenever the process X is in a state v, the time
to the next potential arrival (birth) from the outside into the set A € A is exponentially distributed with
birth-rate kernel A(v, A), where sup,cn A(v, IE) < oo. Also, for each unit located at = € IE, the time to
its departure (death) is exponentially distributed with death rate (v, ), which is positive when v(dz) > 0.
Then X is a Markov jump process with transition rate kernel

q(v,C) = /E)\(V, dz)1(v + 0, € C)

—i—/ v(dz)y(v,z)l(v -6, € C), velN, CeN. (1)
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The following result characterizes the reversibility of X in terms of the measures H,, on [E" defined by
Hp(dzy -+ dag) = H’Y vk, 1) " A(Wg1, dag), 2

where vy = 0 and v, = Zle Oz,

Theorem 1. The Markov process X with transition rate kernel (1) is reversible with respect to a measure
with an atom at 0 if and only if

Hn(dxl te dxn) = Hn(da:/l e dl‘;l), (3)

for any permutation 'y - - - ), of x1 - - - xy, and n > 1. In this case, X is reversible with respect to

Z w(day - dzg)1(> 6, €C), CEN, )
=1

where the term in the sum for n = 0 is 1(0 eC).

We now describe a spatial queueing system in which a measure-valued Markov process X = {X; : ¢t > 0}
as above represents the locations of units (customers) that move in the space IE where they are processed.
The X jumps from the state v to the state

Tpyv =v — 05 + 6y € IN,

when a unit at z moves to the location y. Here 69 = 0 when z = 0, and v({z}) > 0 when = € IE. We
assume that the transition rate kernel for the process is

q(yv C) - /]ET(Vv TOy’/))‘(Ov d?/)l(TOyV € C) (5)
—I-/ r(W, Tyyv)N e, dy)1(Tyyr € C), velN, CeN. (6)
ExE

Here 7(v, T,yv) is a departure-attraction rate at which a unit tends to depart from x and be attracted to y.
This is analogous to a service and attraction rate in queueing networks. The \(z, dy) is a Markovian routing
kernel as above with stationary distribution . The multiplication r (v, Ty, v)A(z, dy) or compounding is
similar to the compounding of service and routing rates in Jackson networks.
We assume that A and (v, T, /) are such that ¢(v, IN) is finite and the process is regular. These conditions
are true if
sup /7“(1/, Tryv) Nz, dy) < oo
zeEJ/E
As invariant measure for the process X is generally not tractable, but it is tractable when X is reversible.
For this we assume that routing kernel A\(x, A) on IE is reversible with respect to a.

Theorem 2. If f(v)r(v,n) is symmetric for some positive function f on IN, then X is reversible with
respect to w(dv) = f(v)mo(dv), where , is the Poisson distribution with intensity o

ma(C) = e F) 060+2/ —a(dry) - afdzn)] Z(sxkec CeN.

Example 1. Consider the process with departure-attraction rate
u(v — 0z) v(v + dy)
uw(y) o)
where u and v are positive functions. The first ratio is the rate at which a unit at = departs from its location,

and the second ratio is the rate at which a unit is attracted to the location y. In this case, u(v)v(v)r(v,n) is
symmetric, and hence X is reversible with respect to 7(dv) = u(v)v(v)ma (dv).

r(v, Tyyv) =
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