
Информационные процессы, Том 2, № 1, 2002, стр. 62–84.
c© 2002 Golubtsov.

INFORMATION THEORY AND INFORMATION PROCESSING

Monoidal Kleisli Category as a Background
for Information Transformers Theory

Peter V. Golubtsov

Moscow State Lomonosov University
Department of Physics, Moscow State University

119899, Moscow, Russia
E-mail: P V G@mail.ru
Received May 13, 2002

CONTENTS

Abstract—We consider any uniform class of information transformers (ITs) as a family of morphisms
of a monoidal category that contains a subcategory (of deterministic ITs) with finite products and
satisfies certain set of axioms. Besides, many IT-categories can be constructed as Kleisli categories. The
ingredients for this construction are: a base category (of deterministic ITs); a functor, producing objects
of “distributions”; a natural transformation, representing “independent product of distributions”. The
paper also generalizes Bayesian approach to decision-making problems and studies informativeness of
ITs. It shows that classes of equivalent ITs form a partially ordered bounded Abelian monoid. Several
examples of concrete IT-categories are examined.

1. INTRODUCTION

Currently the growing interest is attracted to various mathematical ways of describing uncertainty, most
of them being different from the probabilistic one, (e.g., based on the apparatus of fuzzy sets). For adequate
theoretical study of the corresponding “nonstochastic” systems of information transforming and, in particular,
for the study of important notions, such as sufficiency, informativeness, etc., we need to develop an approach
general enough to describe different classes of information transforming systems in a uniform way.
It is convenient to consider different systems that take place in information acquiring and processing as

particular cases of so-called information transformers (ITs). Besides, it is useful to work with families of ITs
in which certain operations, e.g., sequential and parallel compositions are defined.
It was noticed fairly long ago [1,2,3,4,5], that the adequate algebraic structure for describing information

transformers (initially for the study of statistical experiments) is the structure of category [6, 7, 8, 9].
Analysis of general properties for the classes of linear, multivalued, and fuzzy information transformers,

studied in [5,10,11,12,13,14,15,16], allowed to extract general features shared by all these classes. Namely,
each of these classes can be considered as a family of morphisms in an appropriate category, where the
composition of information transformers corresponds to their “consecutive application.” Each category of
ITs (or IT-category) contains a subcategory (of so called, deterministic ITs) that has products. Moreover, the
operation of morphism product is extended in a “coherent way” to the whole category of ITs.
The work [17] undertook an attempt to formulate a set of “elementary” axioms for a category of ITs, which

would be sufficient for an abstract expression of the basic concepts of the theory of information transformers
and for study of informativeness, decision problems, etc. This paper proposes another, significantly more
compact axiomatic for a category of ITs. According to this axiomatic a category of ITs is defined in effect
as a monoidal category [6, 8], containing a subcategory (of deterministic ITs) with finite products.
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Among the basic concepts connected to information transformers there is one that plays an important role
in the uniform construction of a wide spectrum of IT-categories — the concept of distribution. Indeed, fairly
often an IT a : A → B can be represented by a mapping from A to the “space of distributions” on B (see,
e.g., [13,14]). For example, a probabilistic transition distribution (an IT in the category of stochastic ITs) can
be represented by a certain measurable mapping fromA to the space of distributions on B. This observation
suggests to construct a category of ITs as aKleisli category [6,18,19], arising from the following components:
an obvious category of deterministic ITs; a functor that takes an object A to the object of “distributions” on
A; and a natural transformation of functors, describing an “independent product of distributions”.
It appears that rather general axiomatic theory, obtained this way, makes it possible to express in terms

of IT-categories basic concepts for information transformers and to derive their main properties.
Of cause, the most developed theory of uncertainty is probability theory (and statistics, based on proba-

bility). Certainly, mathematical statistics accumulated a rich conceptual experience. It introduced and deeply
investigated such notions as joint and conditional distributions, independence, sufficiency, and others.
At the same time, it appears that all these concepts have very abstract meaning and hence, they can be

treated in terms of alternative (i.e., not probabilistic) approaches to the description of uncertainty. In fact, the
basic notions of probability theory and statistics, as well as the methodology and results, are easily extended
to other theories dealing with uncertainty. In [12, 14] it is shown that a rather substantive decision theory
may be constructed even on the very moderate basis of multivalued or fuzzy maps.
The approach developed in this paper allows to express easily in terms of IT-categories such concepts

as distribution, joint and conditional distributions, independence, and others. It is shown that on the basis
of these concepts it is possible to formulate fairly general statement of decision-making problem with a
prior information, which generalizes the Bayesian approach in the theory of statistical decisions. Moreover,
the Bayesian principle, derived below, like its statistical prototype [20], reduces the problem of optimal
decision strategy construction to a significantly simpler problem of finding optimal decision for a posterior
distribution.
Among the most important concepts in categories of ITs is the concept of (relative) informativeness of

information transformers. There are two different approaches to the concept of informativeness.
One of these approaches is based on analyzing the “relative positions” of information transformers in the

corresponding mathematical structure. Roughly speaking, one information transformer is regarded as more
informative than another one if with the aid of an additional information transformer the former one can be
“transformed” to an IT, which is similar to (or more “accurate” than) the letter one. In fact, this means that
all the information that can be obtained from the latter information transformer can be extracted from the
former one as well.
The other approach to informativeness is based on treating information transformers as data sources

for decision-making problems. Here, one information transformer is said to be semantically more infor-
mative than another if it provides better quality of decision making. Obviously, the notion of semantical
informativeness depends on the class of decision-making problems under consideration.
In the classical researches of Blackwell [21,22], the correspondence between informativeness (Blackwell

sufficiency) and semantical informativeness (Blackwell informativeness) were investigated in a statistical
context. These studies were extended byMorse, Sacsteder, and Chentsov [1,2,4,3], who applied the category
theory techniques to their studies of statistical systems.
It is interesting, that under very general conditions the relations of informativeness and semantical

informativeness (with respect to a certain class of decision-making problems) coincide. Moreover, in some
categories of ITs it is possible to point out one special decision problem, such that the resulting semantical
informativeness coincides with informativeness.
Analysis of classes of equivalent (with respect to informativeness) information transformers shows that

they form a partially ordered Abelian monoid with the smallest (also neutral) and the largest elements.
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One of the objectives of this paper is to show that the basic constructions and propositions of probability
theory and statistics playing the fundamental role in decision-making problems havemeaningful counterparts
in terms of IT-categories. Furthermore, some definitions and propositions (for example, the notion of
conditional distribution and the Bayesian principle) in terms of IT-categories often have more transparent
meanings. This provides an opportunity to look at the well known results from a different angle. What is
even more significant, it makes it possible to apply the methodology of statistical decision-making in an
alternative (not probabilistic) context.
Approaches, proposed in this workmay provide a background for construction and study of new classes of

ITs, in particular, dynamical nondeterministic ITs, whichmay provide an adequate description for information
flows and information interactions evolving in time. Besides, a uniform approach to problems of information
transformations may be useful for better understanding of information processes that take place in complex
artificial and natural systems.

2. CATEGORIES OF INFORMATION TRANSFORMERS

2.1. Common structure of classes of information transformers

It is natural to assume that for any information transformer a there are defined a couple of spaces:A and
B, the space of “inputs” (or input signals) and the space of “outputs” (results of measurement, transformation,
processing, etc.). We will say that a “acts” fromA to B and denote this as a : A → B. It is important to note
that typically an information transformer not only transforms signals, but also introduces some “noise”. In
this case it is nondeterministic and cannot be represented just by a mapping from A to B.
It is natural to study information transformers of similar type by aggregating them into families endowed

by a fairly rich algebraic structure [5, 10]. Specifically, it is natural to assume that families of ITs poses the
following properties:
(a) If a : A → B and b : B → C are two ITs, then their composition b ◦ a : A → C is defined.
(b) This operation of composition is associative.
(c) There are certain neutral elements in these families, i.e., ITs that do not introduce any alterations.

Namely, for any space B there exist a corresponding IT iB : B → B such that iB ◦ a = a and b ◦ iB = b.
Algebraic structures of this type are called categories [6, 8].
Furthermore, we will assume, that to every pair of information transformers, acting from the same space

D to spaces A and B respectively, there corresponds a certain IT a ∗ b (called product of a and b) from D
to A× B. This IT in a certain sense “represents” both ITs a and b simultaneously. Specifically, ITs a and b
can be “extracted” from a ∗ b by means of projections πA,B and νA,B from A× B to A and B, respectively,
i.e., πA,B ◦ (a ∗ b) = a, νA,B ◦ (a ∗ b) = b. Note, that typically, an IT c such that πA,B ◦ c = a, νA,B ◦ c = b is
not unique, i.e., a category of ITs does not have products (in category-theoretic sense [6, 7, 8, 9]). Thus, the
notion of a category of ITs demands for an accurate formalization.
Analysis of classes of information transformers studied in [5, 10, 11, 12, 13, 14, 15, 16], gives grounds to

consider these classes as categories that satisfy certain fairly general conditions.

2.2. Categories: basic concepts

Recall that a category (see, for example, [6, 7, 8, 9]) C consists of a class of objects Ob(C), a class of
morphisms (or arrows) Ar(C), and a composition operation ◦ for morphisms, such that:

(a) To any morphism a there corresponds a certain pair of objects A and B (the source and the target of a),
which is denoted a : A → B.

(b) To every pair of morphisms a : A → B and b : B → C their composition b ◦ a : A → C is defined.

Moreover, the following axioms hold:
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(c) The composition is associative:
c ◦ (b ◦ a) = (c ◦ b) ◦ a.

(d) To every objectR there corresponds an (identity) morphism iR: R→ R, so that

∀a : A → B a ◦ iA = a = iB ◦ a.

A morphism a : A → B is called isomorphism if there exists a morphism b : B → A such that a ◦ b = iB
and b ◦ a = iA. In this case objects A and B are called isomorphic.
Morphisms a : D → A and b : D → B are called isomorphic if there exists am isomorphism c : A → B

such that c ◦ a = b.
An object Z is called terminal object if for any object A there exists a unique morphism from A to Z ,

which is denoted zA: A → Z in what follows.
A category D is called a subcategory of a category C if Ob(D) ⊆ Ob(C), Ar(D) ⊆ Ar(C), and

morphism composition inD coincide with their composition in C.
It is said that a category has (pairwise) products if for every pair of objects A and B there exists their

product, that is, an object A×B and a pair of morphisms πA,B : A×B → A and νA,B : A×B → B, called
projections, such that for any objectD and for any pair of morphisms a : D → A and b : D → B there exists
a unique morphism c : D → A× B, satisfying the following conditions:

πA,B ◦ c = a, νA,B ◦ c = b. (1)

We call such morphism c the product of morphisms a and b and denote it a ∗ b.
It is easily seen that existence of products in a category implies the following equality:

(a ∗ b) ◦ d = (a ◦ d) ∗ (b ◦ d). (2)

In a category with products, for two arbitrary morphisms a : A → C and b : B → D one can define the
morphism a × b:

a × b : A× B → C ×D, a × b
def= (a ◦ πA,B) ∗ (b ◦ νA,B). (3)

This definition and (1) obviously imply that the morphism c = a × b satisfy the following conditions:

πC,D ◦ c = a ◦ πA,B, νC,D ◦ c = b ◦ νA,B (4)

Moreover, c = a × b is the only morphism satisfying conditions (4).
It is also easily seen that (2) and (3) imply the following equality:

(a × b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d). (5)

SupposeA×B and B×A are two products of objectsA and B taken in different order. By the properties
of products, the objects A× B and B ×A are isomorphic and the natural isomorphism is

σA,B : A× B → B ×A, σA,B
def= νA,B ∗ πA,B. (6)

Moreover, for any objectD and for any morphisms a : D → A and b : D → B, the morphisms a∗ b and b∗a
are isomorphic, that is,

σA,B ◦ (a ∗ b) = b ∗ a. (7)

Similarly, by the properties of products, the objects (A× B)× C and A× (B × C) are isomorphic. Let

αA,B,C : (A× B)× C → A× (B × C)
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be the corresponding natural isomorphism. Its “explicit” form is:

αA,B,C
def= (πA,B ◦ πA×B,C) ∗

(
(νA,B ◦ πA×B,C) ∗ νA×B,C

)
. (8)

Then for any object D and for any morphisms a : D → A, b : D → B, and c : D → C we have

αA,B,C ◦
(
(a ∗ b) ∗ c

)
= a ∗ (b ∗ c). (9)

2.3. Elementary axioms for categories of information transformers

In this subsection we set forward the main properties of categories of ITs. All the following study will
rely exactly on these properties.
In [5, 10, 11, 13, 16] it is shown (see also examples in section 6 below) that classes of information

transformers can be considered as morphisms in certain categories. As a rule, such categories do not have
products, which is a peculiar expression of nondeterministic nature of ITs in these categories. However, it
turns out that deterministic information transformers, which are usually determined in a natural way in any
category of ITs, form a subcategory with products. This point makes it possible to define a “product” of
objects in a category of ITs. Moreover, it provides an axiomatic way to describe an extension of the product
operation from the subcategory of deterministic ITs to the whole category of ITs.

Definition 1. We shall say that a category C is a category of information transformers if the following
axioms hold:

1. There is a fixed subcategory of deterministic ITs D that contains all the objects of the category C
(Ob(D) = Ob(C)).

2. The classes of isomorphisms inD and inC coincide, that is, all the isomorphisms inC are deterministic.
3. The categoriesD and C have a common terminal object Z .
4. The categoryD has pairwise products.
5. There is a specified extension of morphism product from the subcategory D to the whole category C,
that is, for any object D and for any pair of morphisms a : D → A and b : D → B in C there is certain
information transformer a ∗ b : D → A× B (which is also called a product of ITs a and b) such that

πA,B ◦ (a ∗ b) = a, νA,B ◦ (a ∗ b) = b.

6. Let a : A → C and b : B → D are arbitrary ITs inC, then the IT a× b defined by Eq. (3) satisfies Eq. (5):

(a × b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

7. Equality (7) holds not only in D but in C as well, that is, product of information transformers is
“commutative up to isomorphism.”

8. Equality (9) also holds in C. In other words, product of information transformers is “associative up to
isomorphism” too.

Now let us make several comments concerning the above definition.
We stress that in the description of the extension ofmorphism product from the categoryD toC (Axiom 5)

we do not require the uniqueness of an IT c : D → A× B that satisfies conditions (1).
Nevertheless, it is easily verified, that the equations (4) are valid for c = a × b not only in the category

D, but in C as well, that is,

πC,D ◦ (a × b) = a ◦ πA,B, νC,D ◦ (a × b) = b ◦ νA,B.
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However, the IT c that satisfy the equations (4) may be not unique. Note also that in the category C Eq. (2)
in general does not hold.
Further, note that Axiom 6 immediately implies

(a × b) ◦ (c × d) = (a ◦ c) × (b ◦ d).

Finally note that any category that has a terminal object and pairwise products can be considered as a
category of ITs in which all information transformers are deterministic.

3. CATEGORY OF INFORMATION TRANSFORMERS AS A MONOIDAL CATEGORY

As we have already mentioned above in a category of ITs there are certain “meaningful” operations of
product for objects and for morphisms. However, these operations are not product operations in category-
theoretic sense. Nevertheless, every category of ITs is a monoidal category (see, e.g., [6, 8]).
First note, that every categoryDwith pairwise products andwith terminal objectZ constitutes amonoidal

category 〈D,×,Z, α, λ, ρ〉, where × : D ×D → D is the product functor and αA,B,C : (A × B) × C →
A × (B × C), λA: Z × A → A, and ρA: A × Z → A are the obvious natural equivalences. Besides,
as a category with products, the category D has a natural equivalence σ, σA,B : A × B → B × A, which
interchanges components in a product.

Definition 2. We will say that a categoryC is a category of information transformers over a subcategory
(of deterministic ITs)D if the following three axioms hold.

Axiom 1. 〈C,×,Z, α, λ, ρ〉 is a monoidal category for a certain: functor× : C×C → C, object Z , and
natural equivalences α, λ and ρ.
We will refer to morphisms of the category C as information transformers.
Axiom 2. The categoryC has a subcategoryD, such that all the objects ofC are contained inD, Z is a

terminal object inD, and the functor × is a product functor onD.
Morphisms of the subcategoryD will be called deterministic information transformers.
Thus, the following properties hold in the subcategoryD:

(a) There are natural transformations defined in D, πA,B : A × B → A and νA,B : A × B → B that specify
projections on components of a product.

(b) For any deterministic ITs (morphisms in D) a : C → A and b : C → B there exists e unique IT
c = a ∗ b : C → A× B for which πA,B ◦ c = a and νA,B ◦ c = b;

(c) D is also a monoidal category with the natural equivalences α, λ and ρ explicitly expressed through π
and ν, i.e.,

λA
def= πZ,A, ρA

def= νA,Z,

αA,B,C
def= (πA,B ◦ πA×B,C) ∗

(
(νA,B ◦ πA×B,C) ∗ νA×B,C

)
.

(d) There is a natural equivalence of “object transposition” σ defined onD:

σA,B
def= νA,B ∗ πA,B : A× B → B ×A.

(e) There is a “diagonal” natural transformation δ defined onD:

δC
def= iC ∗ iC : C → C × C.
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Note that with the help of the “diagonal” natural transformation the product of morphisms a ∗ b may be
expressed through their “functorial product” a× b, i.e., a ∗ b = (a× b) ◦ δC.
Axiom 3.Natural transformations π, ν and σ (in the categoryD) are natural transformations in the whole

category C as well.
Let us stress here, that we do not require that δ is a natural transformation on the whole category C.

Furthermore, typically, in many important examples of categories of ITs δ is not a natural transformation.
Such categories do not have products in category-theoretic sense. However we can extend the product
operation for morphisms from the subcategoryD to C. Specifically, we define in C:

a ∗ b
def= (a× b) ◦ δC.

Theorem 1. Definitions 1 and 2 for a category of information transformers are equivalent.

4. IT-CATEGORY AS KLEISLI CATEGORY

4.1. Concept of distribution. Kleisli category

The two equivalent definitions presented above provide the minimal conceptual background for studying
categories of ITs, e.g., for definition and analysis of informativeness, semantic informativeness, decision
problems, etc. [1, 2, 3, 4, 5, 17, 13, 10]. However these definitions do not provide any tools for constructing
categories of ITs on the basis of more elementary concepts. The concept of distribution is one of the most
important and it plays a critical role in the uniform construction of a wide spectrum of IT-categories. Its
importance is connected to the observation that in many important IT-categories an information transformer
a : A → B may be represented by a morphisms fromA to the “object of distributions” over B. For example,
a probabilistic transition distribution (an IT in the category of stochastic ITs) may be represented by a certain
measurable mapping A to the space of distributions on B.
Thus, we will suppose that on some fixed “base” category D (category of deterministic ITs) there

defined a functor T , which takes an object A to the object TA of “distributions” on A. Besides, we
assume that there are two natural transformations connected to this functor: η : I → T and µ : TT → T .
Informally, ηA: A → TA takes an element of A to a “discrete distribution, concentrated on this element”,
and µA: TTA → TA “mixes” (averages) a distribution of distributions onA, by transforming it to a certain
distribution on A. Besides, there are natural “coherence” conditions for η and µ:

µA ◦ TµA = µA ◦ µ
TA

and
µA ◦ TηA = i

TA µA ◦ η
TA = i

TA

that may be presented by the following commutative diagrams:

TTA TA

TTTA TTA

-
µ

?

µT

-
Tµ

?

µ

TA TTA TA

TA

Q
Q

Q
Q

Q
QQs

T

-
ηT

?

µ

�
Tη �

�
�

�
�

��+

T

Commutativity of the square means that for any “third-order distribution” on A (i.e. distribution on a
collection of distributions on a family of distributions on A) the result of “mixing” of distributions does not
depend on the order of “mixing”. More precisely, the result of mixing over the “top” (third order, element of
TTTA) distribution first and mixing the resulting second-order distribution next should give the same result
as for mixing over “intermediate” (second-order, elements of TTA) distributions first and then mixing the
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resulting second order distribution. Commutativity of the left triangle means that mixing of a second order
distribution, concentrated in one element (which is itself a distribution onA) gives this distribution. Finally,
commutativity of the right triangle means if we take some distribution on A, transform it to “the same”
distribution of singletons and then mix the resulting second-order distribution, we will obtain the original
distribution.
It is well known, that a collection 〈T, η, µ〉, satisfying the two commutative diagrams above, is called a

triple (monad) [6, 8, 19] on the categoryD.
The concept of triple provides an elegant technique of constructing a category of ITsC on the basis of the

category of deterministic ITs, as aKleisli category [6,18,19]. In this construction each morphisms a : A → B
in the category C is determined by a morphism a′ : A → TB of the category D. The composition a ◦ b of
ITs a : A → B and b : B → C in C is represented by the morphism

(b ◦ a)′ def= µC ◦ Tb′ ◦ a′

(b ◦ a)′ = A -
a′

TB -
Tb′

TTC -
µ

TC

inD, and any deterministic IT c : C → D (in C) are determined by the morphism

c′
def= ηD ◦ c

c′ = C -
c

D -
η

TD

inD.

4.2. Independent distribution. Monoidal Kleisli category

The main factor in the construction of the category of ITs as a Kleisli category is equipping it with a
structure of monoidal category. For this purpose we introduce a natural transformation γ : × T → T×,
γA,B : TA×TB → T (A×B), which “takes” a pair of distributions to their “independent joint distribution”
(see also [23]). Then the product c = a ∗ b of ITs a : D → A and b : D → B (in C) is determined by the
morphism

c′
def= γA,B ◦ (a′ ∗ b′)

D TA× TB-a′∗b′
T (A× B)

TA

��
���

��*a′ 6
πT

TB

HH
HHH

HHjb′ ?
νT

-
γ

inD. Note, that a′ ∗ b′ here exists and is uniquely defined sinceD is a category with products.

Theorem 2. Suppose that D is a category with pairwise products and with terminal object Z; π, ν, α,
σ are the corresponding natural transformations, and 〈T, η, µ〉 is a triple on D with ηB monomorphic for
every B. Then the generated Kleisli category C, equipped with a natural transformation γ, is a category
of information transformers if and only if the following compatibility conditions of γ with the natural
transformations π, ν, α, σ, η, and µ hold:
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π-γ and ν-γ conditions:

TπA,B ◦ γA,B = π
TA,TB TνA,B ◦ γA,B = ν

TA,TB

σ-γ condition:
TσA,B ◦ γA,B = γB,A ◦ σ

TA,TB

α-γ condition:

TαA,B,C ◦ γA×B,C ◦ (γA,B× i
TC) = γA,B×C ◦ (i

TA× γB,C) ◦ α
TA,TB,TC

µ-γ condition:
µA×B ◦ TγA,B ◦ γ

TA,TB = γA,B ◦ (µA× µB)

η-γ condition:
γA,B ◦ (ηA× ηB) = ηA×B

Thus, construction of a categories of ITs is, in effect, reduced to selection of a base categoryD, a functor
T : D → D, and a natural transformation γ : × T → T×.
All these conditions have rather transparent meaning that we will try to comment below.
For better understanding we also provide the corresponding commutative diagrams in which we omit the

obvious indices for the sake of readability:
π-γ and ν-γ conditions. Marginal distributions extracted from independent joint distribution coincide

with the original distributions:

TA× TB T (A× B)-
γ

TA

��
����*πT

HH
HHHHY Tπ

TB

HH
HHHHjνT

��
����� Tν

σ-γ condition. Transposition of components of an independent joint distribution leads to the correspond-
ing transformation of the joint distribution, i.e., Independent joint distribution is “invariant” with respect to
transposition of its components. More precisely, we can say that the independent distribution morphism for
transposed components γB,A: TB × TA → T (B × A) is naturally isomorphic to the original morphism
γA,B : TA × TB → T (A × B). The corresponding isomorphism (of morphisms) is provided by the pair〈
σ
TA,TB , TσA,B

〉
:

TB × TA T (B ×A)-
γ

TA× TB T (A× B)-
γ

?

σT
?

Tσ

α-γ condition: Independent joint distribution for three components is “naturally invariant” with respect
to the order of parentheses. More precisely, the morphisms

γA,B×C ◦ (i
TA× γB,C) : TA× (TB × TC) → T (A× (B × C))
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and
γA×B,C ◦ (γA,B× i

TC) : (TA× TB)× TC → T ((A× B)× C)
(that take independent joint distributions for three components with different order of parentheses) are
naturally isomorphic via

〈
α

TA,TB,TC , TαA,B,C

〉
:

TA× (TB × TC) -
T × γ

TA× T (B × C) -
γ

T (A× (B × C))

(TA× TB)× TC -
γ × T

T (A× B)× TC -
γ

T ((A× B)× C)

?

αT
?

Tα

µ-γ condition. Independent joint distribution for results of mixing of two second-order distributions may
also be obtained by mixing the corresponding second-order independent distributions:

TA× TB -
γ

T (A× B)

TTA× TTB -
γT

T (TA× TB) -
Tγ

TT (A× B)

?

µ× µ
?

µ

η-γ condition: Independent joint distribution for two “singleton” distributions is just the corresponding
“singleton” distribution on a product space:

TA× TB -
γ

T (A× B)

A× B
�

�
�

�	

η × η @
@

@
@R

η

5. INFORMATIVENESS OF INFORMATION TRANSFORMERS

5.1. Accuracy relation

In order to define informativeness relation we will need to introduce first the following auxiliary notion.

Definition 3. We will say that B is an accuracy relation on an IT-category C if for any pair of objects
A and B in C the set C(A,B) of all ITs from A to B is equipped with a partial order B that satisfies the
following monotonicity conditions:

a B a′, b B b′ =⇒ a ◦ b B a′ ◦ b′,

a B a′, b B b′ =⇒ a ∗ b B a′ ∗ b′.

Thus, the composition and the product are monotonous with respect to the partial order B. For a pair of
ITs a, b ∈ C(A,B) we shall say that a is more accurate then b whenever a B b.
It obviously follows from the very definition of the operation × (3) and from the monotonicity conditions

that the operation × is monotone as well:

a B a′, b B b′ =⇒ a × b B a′ × b′.

It is clear that for any IT-category there exists at least a “trivial variant” of the partial order B, namely,
one can choose an equality relation forB, that is, one can put a B b

def⇐⇒ a = b. However, many categories
of ITs (for example, multivalued and fuzzy ITs) provide a “natural” choice of the accuracy relation, which
is different from the equality relation.
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5.2. Definition of informativeness relation

Suppose a : D → A and b : D → B are two information transformers with a common source D. Assume
that there exists an IT c : A → B such that c ◦ a = b. Then any information that can be obtained from b can
be obtained from a as well (by attaching the IT c next to a). Thus, it is natural to consider the information
transformer a as being more informative than the IT b and also more informative than any IT less accurate
than b.
Now we give the formal definition of the informativeness relation in the category of information trans-

formers.

Definition 4. We shall say that an information transformer a is more informative (better) than b if there
exists an information transformer c such that c ◦ a B b, that is,

a < b
def⇐⇒ ∃c c ◦ a B b.

It is easily verified that the informativeness relation< is a preorder on the class of information transformers
in C. This preorder < induces an equivalence relation ∼ in the following way:

a ∼ b
def⇐⇒ a < b & b < a.

Obviously, the relation “more informative” extends the relation “more accurate,” that is,

a B b =⇒ a < b.

5.3. Main properties of informativeness

It can be easily verified that the informativeness relation < satisfies the following natural properties.

Lemma 1. Consider all information transformers with a fixed source D.

(a) The identity information transformer iD is the most informative and the terminal information transformer
zD is the least informative:

∀a iD < a < zD.

(b) Any information transformer a : D → B × C is more informative than its parts πB,C ◦ a and νB,C ◦ a.
(c) The product a ∗ b is more informative than its components

a ∗ b < a, b.

Furthermore, the informativeness relation is compatible with the composition and the product operations.

Lemma 2. (a) If a < b, then a ◦ c < b ◦ c.
(b) If a < b and c < e, then a ∗ c < b ∗ e.

5.4. Structure of the family of informativeness equivalence classes

Let a be some information transformer. We shall denote by [a] the equivalence (with respect to infor-
mativeness) class of a. We shall also use boldface for equivalence classes, that is, a ∈ a is equivalent to
a = [a].
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Theorem 3. Let J(D) be the family of informativeness equivalence classes for the class of all information
transformers with a fixed domainD. The family J(D) forms a partial ordered Abelianmonoid 〈J(D),<, ∗,0〉
with the smallest element 0 and the largest element 1, where

[a] < [b] def⇐⇒ a < b, [a] ∗ [b] def= [a ∗ b], 0 def= [zD], 1 def= [iD].

Moreover, the following properties hold:

(a) 0 ∗ a = a,
(b) 1 ∗ a = 1,
(c) 0 4 a 4 1,
(d) a ∗ b < a,b,
(e) (a < b) & (c < e) =⇒ a ∗ c < b ∗ e.

6. INFORMATIVENESS AND SYNTHESIS OF OPTIMAL INFORMATION TRANSFORMERS

In this section, we consider an alternative (with respect to the above) approach to informativeness
comparison. This approach is based on treating information transformers as data sources for decision-making
problems.

6.1. Decision-making problems in categories of ITs

Results of observations, obtained on real sources of information (e.g. indirect measurements) are as
a rule unsuitable for straightforward interpretation. Typically it is assumed that observations suitable for
interpretation are those into a certain object U which in what follows will be called object of interpretations
or object of decisions.
By an interpretable information transformer for signals from an object D we mean any information

transformer a : D → U .
It is usually thought that some interpretable information transformers are more suitable for interpretation

(of obtained results) than others. Namely, on a set C(D,U) of information transformers from D to U , one
defines some preorder relation�, which specifies the relative quality of various interpretable information
transformers. Typically the relation� is predetermined by the specific formulation of a problem of optimal
information transformer synthesis (that is, decision-making problem).
We shall say that an abstract decision-making problem is determined by a triple 〈D,U ,�〉, where D is

an object of studied (input) signals, U is an object of decisions (or interpretations), and� is a preorder on
the set C(D,U).
We shall call a preorder� monotone if for any a, b ∈ C(D,U)

a B b =⇒ a � b,

that is, more accurate IT provides better quality of interpretation.
For a given information transformer a : D → Awe shall also say that an IT b reduces a to an interpretable

information transformer if b ◦ a : D → U , that is, if b : A → U . Such an information transformer b will be
called a decision strategy.
The set of all interpretable information transformers obtainable on the basis of a : D → Awill be denoted

Ua ⊆ C(D,U):
Ua

def=
{
b ◦ a | b : A → U

}
.

We shall call a decision strategy r : A → U optimal (for the IT a with respect to the problem 〈D,U ,�〉)
if the IT r ◦ a is a maximal element inUa with respect to�. Thus, a decision-making problem for a given
information transformer a is stated as the problem of constructing optimal decision strategies.
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6.2. Semantical informativeness

The relation� induces a preorder relation w on a class of information transformers operating from D in
the following way.
Assume that a and b are information transformers with the source D, that is, a : D → A, b : D → B. By

definition, put
a w b

def⇐⇒ ∀b′ : B → U ∃a′ : A → U a′ ◦ a � b′ ◦ b.

In other words, a w b if for every interpretable information transformer d derived from b there exists an
interpretable information transformer c derived from a such that c � d, that is,

a w b ⇐⇒ ∀d ∈ Ub ∃c ∈ Ua c � d.

It can easily be checked that the relation w is a preorder relation.
It is natural to expect that if one information transformer is more informative than the other, then the

former will be better than the latter in any context. In other words, for any preorder � on the set of
interpretable information transformers the induced preorder w is dominated by the informativeness relation
< (that is, w is weaker than <). The converse is also true.

Definition 5. We shall say that an information transformer a is semantically more informative than b if
for any interpretation object U and for any preorder� (on the set of interpretable information transformers)
a w b for the induced preorder w.

The following theorem is in some sense a “completeness” theorem, which establishes a relation between
“structure” (b can be “derived” from a) and “semantics” (a is uniformly better then b in decision-making
problems).

Theorem 4. For any information transformers a and bwith a common sourceD, information transformer
a is more informative than b if and only if a is semantically more informative than b.

Let us remark that the above proof relies heavily on the extreme extent of the class of decision problems
involved. This makes it possible to select for any given pair of ITs a, b an appropriate decision-making
problem 〈D,Ub,�b〉 in which the interpretation object Ub and the preorder�b depend on the IT b. However,
in some cases it is possible to point out a concrete (universal) decision-making problem such that

a < b ⇐⇒ a w b.

Theorem 5. Assume that for a given object D there exists an object D̃ such that for every information
transformer acting from D there exists an equivalent (with respect to informativeness) IT acting from D to
D̃, that is,

∀B ∀b : D → B ∃b′ : D → D̃ b ∼ b′.

Let us choose the decision object U def= D̃ and the preorder�, defined by

c � d
def⇐⇒ c B d.

Then a < b if and only if a w b.

Note that in general case an optimal decision strategy (if exists) can be nondeterministic. However, in
many cases it is sufficient to search optimal strategies among deterministic ITs. Indeed, in some categories of
information transformers the relation of “accuracy” satisfies the following condition: every IT is dominated
by some deterministic IT, that is, for every IT there exists a more accurate deterministic IT.
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Proposition 1. Assume that 〈D,U ,�〉 is a monotone decision-making problem in a category of ITs C.
Assume also that the following condition holds:

∀c ∈ Ar(C) ∃d ∈ Ar(D) d B c.

Then for any IT a : D → R and for any decision strategy r : R → U there exists a deterministic strategy
r
0
: R→ U such that r

0
◦ a � r ◦ a.

7. DECISION-MAKING PROBLEMS WITH A PRIOR INFORMATION

In this section we formulate in terms of categories of information transformers an analogy for the
classical problem of optimal decision strategy construction for decision problems with a prior information
(or information a priori). We also prove a counterpart of the Bayesian principle from the theory of statistical
games [20, 24]. Like its statistical prototype it reduces the problem of constructing an optimal decision
strategy to a much simpler problem of finding an optimal decision for a posterior information (or information
a posteriori).
First we define in terms of categories of information transformers some necessary concepts, namely,

concepts of distribution, conditional information transformer, decision problem with a prior information,
and others.

7.1. Distributions in categories if ITs

We shall say that a distribution on an object A (in some fixed category of ITs C) is any IT f : Z → A,
where Z is the terminal object in C.
The concept of distribution corresponds to the general concept of an element of some object in a category,

namely, a morphism from the terminal object (see, e.g., [9]).
Any distribution of the form h : Z → A×B will be called a joint distribution onA andB. The projections

πA,B and νA,B on the componentsA and B respectively, “extract” marginal distributions f and g of the joint
distribution h, that is,

f = πA,B ◦ h : Z → A,

g = νA,B ◦ h : Z → B.

We say that the components of a joint distribution h : Z → A× B are independent whenever this joint
distribution is completely determined by its marginal distributions, that is,

h = (πA,B ◦ h) ∗ (νA,B ◦ h).

Let f be an arbitrary distribution on A and let a : A → B be some information transformer. Then the
distribution g = a ◦ f in some sense “contains an information about f .” This concept can be expressed
precisely of one consider the joint distribution generated by the distribution f and the IT a:

h : Z → A× B, h = (iA ∗ a) ◦ f.

Note, that the marginal distributions for h coincide with f and g, respectively. Indeed,

πA,B ◦ h = πA,B ◦ (iA ∗ a) ◦ f = iA ◦ f = f,

νA,B ◦ h = νA,B ◦ (iA ∗ a) ◦ f = a ◦ f = g.

Let h be a joint distribution onA×B. We shall say that a : A → B is a conditional IT for h with respect
to A whenever h is generated by the marginal distribution πA,B ◦ h and the IT a, that is,

h = (iA ∗ a) ◦ πA,B ◦ h.
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Similarly, an IT b : B → A such that
h = (b ∗ iB) ◦ νA,B ◦ h

will be called a conditional IT for h with respect to B.

7.2. Bayesian decision-making problems

Suppose that, like in Section 6, there are fixed two objects D and U in some category of ITs, namely,
the object of signals and the object of decisions, respectively. In a decision-making problem with a prior
distribution f on D one fixes some preorder �f on the set of joint distributions on D × U for which
D-marginal distribution coincides with f .
Informally, any joint distribution h on D × U of this kind can be considered as a joint distribution of a

studied signal (with the distribution f = πD,U ◦ h on D) and a decision (with the distribution g = νD,U ◦ h

on U). The preorder�f determines how good is the “correlation” between studied signals and decisions.
Formally, an abstract decision problemwith a prior information is determined by a quadruple 〈D,U , f,�f 〉,

whereD is an object of studied signals, U is an object of decisions (or interpretations), f : Z → D is a prior
distribution (or distribution a priori), and�f is a preorder on the set of ITs h : Z → D × U that satisfy the
condition πD,U ◦ h = f .
Furthermore, suppose that there is a fixed IT a : D → R (which determines a measurement; R can be

called an object of observations). An IT r : R → U is called optimal (for the IT a with respect to �f ) if
the distribution (i ∗ r ◦ a) ◦ f is a maximal element with respect to�f . The set of all optimal information
transformers is denoted Optf (a ◦ f).

Theorem 6. (Bayesian principle). Let f be a given prior distribution on D, let a : D → R be a fixed
IT, and let b : R → D be a conditional information transformer for (i ∗ a) ◦ f with respect to R. Then the
set of optimal ITs r : R → U , namely, the set of optimal decision strategies for f over a ◦ f coincides with
the set of optimal decision strategies for b ◦ g over g, where g = a ◦ f :

Optf (a ◦ f) = Optb◦g(g).

In a wide class of decision problems (e.g., in linear estimation problems) an optimal IT r happens to be
deterministic and is specified by the “deterministic part” of the IT b.
For many categories of information transformers (for example, stochastic, multivalued, and fuzzy ITs [20,

12, 14]) an optimal decision strategy r can be constructed “pointwise” according to the following scheme.
For the given “result of observation” y ∈ R consider the conditional (posterior) distribution b(y) for f under
a fixed g = y, and put

r(y) def= db(y),

where db(y) is an optimal decision with respect to the posterior distribution b(y).

8. EXAMPLES OF CATEGORIES OF INFORMATION TRANSFORMERS

In this section we present several examples of different classes of information transformers. The major
difference between them is the way of representing uncertainty. In each case (except the category stochastic
linear ITs, which cannot be constructed as a Kleisli category, but is a subcategory of one) we will mention
the corresponding: base category D, functor T , and natural transformation γ. “Elementary” definitions for
these categories may be found in [17, 13].
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8.1. Stochastic ITs

Let D = Meas, the category of measurable spaces and measurable maps, TA is the space of all
probability measures onA, (details may be found in [25]) and γA,B takes a pair of distributions P,Q to their
product P ⊗Q, a distribution on A× B.
The category of stochastic information transformers ST consists of measurable spaces (as objects) and

transition probability functions (as morphisms, that is, information transformers) [3, 4, 25]. Note that a
classical statistical experiment (namely, a parametrized family of probability measures), a statistics (namely,
a measurable function of a sample of observations), and a decision strategy (possibly, nondeterministic) can
be represented by appropriate transition probability functions. Thus, all the above concepts fit in well with
this scheme.
Suppose A = 〈ΩA,SA〉 and B = 〈ΩB,SB〉 are two measurable spaces. A stochastic information

transformer a : A → B is determined by a real-valued function (transition probability function [3, 26, 27])
Pa(ω, B) of two arguments ω ∈ ΩA, B ∈ SB that satisfy the following conditions:

(a) Given a fixed event B ∈ SB, the map Pa(·, B) is a measurable function on ΩA.
(b) Given a fixed elementary event ω ∈ ΩA, the map Pa(ω, ·) is a probability measure on 〈ΩB,SB〉.

For a given stochastic information transformers a : A → B and b : B → C their composition b ◦ a in the
category ST corresponds to the transition probability function (see [3, 25])

Pb◦a(ω, C) def=
∫
ΩB

Pb(ω′, C) Pa(ω, dω′) ∀ω ∈ ΩA, ∀C ∈ SC .

The subcategory of deterministic ITs is actually a categoryMeas of measurable spaces and measurable
maps. To every measurable map ϕ : A → B there corresponds the transition probability function

Pϕ(ω, B) def=

{
1, if ϕ(ω) ∈ B,

0, if ϕ(ω) 6∈ B
∀ω ∈ ΩA, ∀B ∈ SB.

The category Meas has products, namely, the product of measurable spaces A and B in Meas is〈
A× B, πA,B, νA,B

〉
, where

A× B def= 〈ΩA × ΩB, SA ⊗SB〉 ,

πA,B and νA,B are the projections from the Cartesian product ΩA × ΩB onto its components ΩA and ΩB
respectively, and SA ⊗SB is the product of σ-algebras SA and SB.
For a given pair of ITs a : D → A and b : D → B with a common source we define their product

a ∗ b : D → A×B so that for every ω ∈ ΩD the probability distribution Pa∗b(ω, ·) on A×B is the product
⊗ of the distributions Pa(ω, ·) and Pb(ω, ·), that is,

Pa∗b(ω, ·) def= Pa(ω, ·)⊗ Pb(ω, ·) ∀ω ∈ ΩD.

In other words (see, for example, [26]), the distribution Pa∗b is completely determined by the following
condition:

Pa∗b(ω, A×B) def= Pa(ω, A) Pb(ω, B) ∀ω ∈ ΩD, ∀A ∈ SA, ∀B ∈ SB.

The only obvious choice for the accuracy relation in the category of stochastic ITs seems to be the equality
relation.
Now let us demonstrate that the basic concepts of mathematical statistics are adequately described in

terms of this IT-category. Namely, we shall verify that the concepts of distribution, conditional distribution,
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etc. (introduced above in terms of IT-categories), in the category of stochastic ITs lead to the corresponding
classical concepts.
Indeed, any probability distributionQ on a givenmeasurable spaceA = 〈ΩA,SA〉 is uniquely determined

by the morphism f : Z → A from the terminal objectZ =
〈
{0},

{
∅, {0}

}〉
(a one-point measurable space)

such that
Pf (0, A) = Q(A) ∀A ∈ SA.

In what follows we shall omit the first argument in Pf (0, A) and write just Pf (A) instead.
A statistical experiment is described by a family of probability measuresQθ on somemeasurable spaceB.

This family is usually parametrized by elements of a certain set ΩA. Sometimes (especially when statistical
problems with a prior information are studied) it is additionally assumed that the setΩA is equipped by some
σ-algebra SA and that Qθ(B) is a measurable function of θ ∈ ΩA for all B ∈ SB (and thus, Qθ(B) is a
transition probability function [27]). Therefore, such statistical experiment is determined by the stochastic
information transformer a : A → B, where

Pa(θ, B) = Qθ(B) ∀θ ∈ ΩA, ∀B ∈ SB.

In the case when no σ-algebra on the set ΩA is specified, one can put SA = P(ΩA), that is, the σ-algebra
of all the subsets of the set ΩA. It is clear that in this case the function Pa(θ, B) = Qθ(B) is a measurable
function of θ ∈ ΩA for every fixed B ∈ SB and thus (being a transition probability function), is described
by a stochastic IT a : A → B.
Note also, that any statistic, being a measurable function, is represented by a certain deterministic IT.

Decision strategies also correspond to deterministic ITs. At the same time, nondeterministic (mixed) decision
strategies are adequately represented by stochastic information transformers of general kind.
Now, let f be some fixed distribution on A and let a : A → B be some IT. The joint distribution h on

A× B, generated by f and a (from the IT-categorical point of view, see Section 7) is

h = (i ∗ a) ◦ f.

It means that for every set A×B, where A ∈ ΩA and B ∈ ΩB,

Ph(A×B) =
∫

ΩA

Pi∗a(ω, A×B) Pf (dω)

=
∫

ΩA

Pi(ω, A) Pa(ω, B) Pf (dω)

=
∫
A

Pa(ω, B) Pf (dω).

Thus we come to the well known classical expression for the generated joint distribution (see, for exam-
ple, [27]).
Now assume that Pf is considered as some probability prior distribution (or distribution a priori) on

A. Then for a given transition probability function Pa, a posterior (or conditional) distribution Pb(ω′, ·) on
A for a fixed ω′ ∈ ΩB is determined, accordingly to [27] by a transition probability function Pb(ω′, A),
ω′ ∈ ΩB, A ∈ SA such that

Ph(A×B) =
∫
B

Pb(ω′, A) Pg(dω′) ∀A ∈ SA, ∀B ∈ SB,
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where
Pg(B) =

∫
ΩA

Pa(ω, B) Pf (dω) ∀B ∈ SB.

It is easily verified that in terms of ITs the above expressions have the following forms:

h = (b ∗ i) ◦ g,

where
g = a ◦ f.

This shows, that the classical concept of conditional distribution is adequately described by the concept of
conditional IT in terms of categories of information transformers.

8.2. Linear stochastic ITs with additive noise

As we will see this category of ITs cannot be constructed as a Kleisli category, but is a subcategory the
category of stochastic ITs, examined above.
SupposeD andR are arbitrary finite-dimensional Euclidean spaces.We shall say that a linear information

transformer [10, 11] (measurement model [28]) a acting from D toR

a : D → R,

is determined by a pair

〈Aa,Σa〉 , Aa : D → R, Σa : R→ R, Σa > 0,

where Aa and Σa are linear maps.
Such pair 〈Aa,Σa〉 represents a statistical experiment of the form [28]

y = Aax + ν, x ∈ D, y ∈ R,

where ν is a random vector inR with the zero mean and the correlation operator Σa.
The composition of two linear ITs 〈Aa,Σa〉 : D → A and 〈Ab,Σb〉 : A → B is defined by

〈Ab,Σb〉 ◦ 〈Aa,Σa〉
def= 〈AbAa,Σb + AbΣaA

∗
b〉 .

The composition corresponds to the consecutive connection of information transformers that have inde-
pendent random errors.
The product of two information transformers

〈Aa,Σa〉 : D → A, 〈Ab,Σb〉 : D → B

is defined by:
〈Aa,Σa〉 ∗ 〈Ab,Σb〉

def= 〈Aa∗b,Σa∗b〉 : D → A× B,

where
Aa∗b : D → A× B, Aa∗bx

def= 〈Aax,Abx〉 ,

Σa∗b : A× B → A× B, Σa∗b 〈x, y〉 def= 〈Σax, Σby〉 .

This construction gives us the category SLT with the subcategory of deterministic ITs is (isomorphic to)
the category of Euclidean spaces and linear maps. In this case a linear map A : D → R corresponds to the
IT 〈A, 0〉 : D → R.
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As we have already mentioned this category of ITs cannot be constructed as a Kleisli category over the
category of finite dimensional Euclidean spaces. Indeed we can not define a “space of distributions” on
some space A as a finite dimensional linear space, and thus, can not define functor T in the category of
finite dimensional Euclidean spaces. However, SLT may be considered as a subcategory the category of
stochastic ITs ST, examined above. Indeed, each Euclidean space may be considered as a measurable space
endowed with Borel σ-algebra. Finally, we may consider an IT a = 〈Aa,Σa〉 : D → R (in SLT) as the
transition probability, that takes an element x ∈ D to the normal distribution N(Aax,Σa) with the mean
value Aax and the correlation operator Σa. Routine verification shows, that the composition and product
operations are preserved under such inclusion of SLT into ST.
In addition to the trivial relation of accuracy (which coincides with the equality relation) one can define

the accuracy relation in the following way:

〈Aa,Σa〉 B 〈Ab,Σb〉
def⇐⇒ Aa = Ab, Σa 6 Σb.

However, it can be proved that the informativeness relations corresponding these different accuracy preorders,
actually coincide.
In the category of linear information transformers every equivalence class [a] corresponds to a pair 〈Q, S〉,

where Q ⊆ D is an Euclidean subspace and S : Q → Q is nonnegative definite operator, that is, S > 0. In
these terms

〈Q1, S1〉 > 〈Q2, S2〉
def⇐⇒ Q1 ⊇ Q2, S1 � Q2 6 S2.

Here S1 � Q2 (the restriction of S1 on Q2) is defined by the expression S1 � Q2
def= P2I1S1P1I2, where

Ij : Qj → D is the subspace inclusion, and Pj : D → Qj is the orthogonal projection (cf. [10, 28]).
Note also that in the category of linear information transformers every IT is dominated (in the sense

of the preorder relation B) by a deterministic IT. Hence, according to Proposition 1, in any monotone
decision-making problem without loss of quality one can search optimal decision strategies in the class of
deterministic ITs.
It is shown in [11], that in the category of linear ITs for any joint distribution there always exist conditional

distributions. Thus in problems with a prior information one can apply Bayesian principle. Its direct proof
in the category of linear ITs as well as the explicit expression for conditional information transformers can
be found in [11].

8.3. The category of sets as a category of ITs

As a trivial example of IT-category we consider the category of sets Set, whose objects are sets and
morphisms are maps. This category has products, hence all the ITs are deterministic. In fact this category is
trivially a Kleisli category with identity functor as functor T .
It is not hard to prove that for a given set D, the class of equivalent informativeness for an IT a with the

set D being its domain, is completely determined by the following equivalence relation ≈a on D:

x ≈a y
def⇐⇒ ax = ay ∀x, y ∈ D.

Furthermore, a < b if and only if the equivalence relation ≈a is finer than ≈b, that is,

a < b ⇐⇒ ∀x, y ∈ D
(
x ≈a y =⇒ x ≈b y

)
.

Thus, the partially ordered monoid of equivalence classes for ITs with the source D, is isomorphic to the
monoid of all equivalence relations on D equipped with the order “finer” and with the product:

x (≈a ∗ ≈b) y
def⇐⇒

(
x ≈a y, x ≈b y

)
∀x, y ∈ D.
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8.4. Multivalued ITs

LetD = Set, the category of sets, TA is the set of all nonempty subsets ofA and γA,B takes pair of sets
P,Q to their Cartesian productP×Q, a subset ofA×B. This leads us to the categoryMVT of multivalued
ITs. Detailed study of this category may be found in [13]. Thus, the categoryMVT consists of sets as objects
and of multivalued maps (everywhere defined relations) as morphisms (information transformers). Despite
its simplicity, this class of ITs may be convenient when stochastic description of measurement error is
inadequate.
So, a multivalued IT a from D toR

a : D → R
is determined by a multivalued map, that is,

∀x ∈ D ax ⊆ R, ax 6= ∅.

Define the composition and the product of multivalued ITs by the following expressions:

(b ◦ a)(x) def=
⋃ {

by | y ∈ ax
}
,

(a ∗ b)(x) def= ax× bx.

The subcategory of deterministic ITs is actually the category of sets Set.
In addition to the trivial accuracy relation in the category of multivalued ITs one can put

a B b
def⇐⇒ ∀x ∈ D ax ⊆ bx.

These two accuracy relations lead to different informativeness relations [13], called (strong) informativeness
< and weak informativeness <̇.
For the both informativeness relations the classes of equivalent ITs with a fixed sourceD can be described

explicitly.
In the case of weak informativeness every class of equivalent ITs corresponds to a certain covering P of

the set D, such that if P contains some set B then it contains all its subsets:(
∃B ∈ P (A ⊆ B)

)
=⇒ A ∈ P.

Moreover, a covering P1 is more (weakly) informative than P2 (namely, P1 corresponds to a class of more
(weakly) informative ITs than P2) if P1 is contained in P2, that is,

P1 <̇ P2
def⇐⇒ P1 ⊆ P2.

In the case of (strong) informativeness every class of equivalent ITs corresponds to a covering P of the
set D, that satisfy the more complex condition:( (

∃B ∈ P A ⊆ B
)

&
(
∃B ⊆ P A =

⋃
B

))
=⇒ A ∈ P.

In this case

P1 < P2
def⇐⇒

( (
∀A ∈ P1 ∃B ∈ P2 A ⊆ B

)
&

(
∀B ∈ P2 ∃A ⊆ P1 B =

⋃
A

) )
.

In the category of multivalued information transformers every IT is dominated (in the sense of the partial
order B) by a deterministic IT. Thus, in the monotone decision-making problem one can search optimal
decision strategies in the class of deterministic ones.
For every joint distribution in the category of multivalued ITs there exist conditional distributions [12].

Therefore, in decision problems with a prior information, the Bayesian approach can be effectively applied.
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8.5. Categories of fuzzy information transformers

Here we define two categories of fuzzy information transformers FMT and FPT that correspond to
different fuzzy theories [14]. LetD = Set, TA is the set of all normalized fuzzy subsets ofA and γA,B takes
pair of fuzzy subsets P,Q to the fuzzy subset P ×Q, (P ×Q)(x, y) = P(x)⊗Q(y),where the operation⊗
may be defined in a variety of ways. The most common are the minimum (the category FMT) and product
(the category FPT) operations [14].
Objects of these categories are arbitrary sets and morphisms are everywhere defined fuzzy maps, namely,

maps that take an element to a normed fuzzy set (a fuzzy set A is normed if supremum of its membership
function µ

A
is 1). Thus, an information transformer a : A → B is defined by a membership function µ

ax
(y)

which is interpreted as the grade of membership of an element y ∈ B to a fuzzy set ax for every element
x ∈ A.
The categoryFMT. Supposea : A → B and b : B → C are some fuzzymaps.Wedefine their composition

b ◦ a as follows: for every element x ∈ A put

µ
(b◦a)x

(z) def= sup
y∈B

min
(
µ

ax
(y), µ

by
(z)

)
.

For a pairs of fuzzy information transformers a : D → A and b : D → B with the common source D, we
define their product as the IT that acts from D to the Cartesian product A× B, such that

µ
(a∗b)x(y, z) def= min

(
µ

ax
(y), µ

by
(z)

)
.

The category FPT. Define the composition and the product by the following expressions:

µ
(b◦a)x

(z) def= sup
y∈B

(
µ

ax
(y) µ

by
(z)

)
,

µ
(a∗b)x(y, z) def= µ

ax
(y) µ

by
(z).

In the both defined above categories of fuzzy information transformers the subcategory of deterministic
ITs is (isomorphic to) the category of sets Set. Let g : A → B be some map (morphism in Set). Define the
corresponding fuzzy IT (namely, a fuzzy map, which is obviously, everywhere defined) g̃ : A → B in the
following way:

µ
g̃(x)

(y) def= δg(x),y =

{
1, if g(x) = y,

0, if g(x) 6= y.

Concerning the choice of accuracy relation, note, that in these IT-categories, like in the category of
multivalued ITs, apart from the trivial accuracy relation one can put for a, b : A → B

a B b
def⇐⇒ ∀x ∈ A ∀y ∈ B µ

ax
(y) 6 µ

bx
(y).

In each fuzzy IT-category these two choices lead to two different informativeness relations, namely the
strong and the weak ones.
Like in the categories of linear andmultivalued ITs discussed above, monotone decision-making problems

admit restriction of the class of optimal decision strategies to deterministic ITs without loss of quality.
It was shown in [14] that for every joint distribution in the categories of fuzzy ITs there exist conditional

distributions. It allows Bayesian approach and makes use of Bayesian principle in decision problems with a
prior information for fuzzy ITs [14] (see also [15], where connections between fuzzy decision problems and
the underlying fuzzy logic are studied).
In this section we introduced only several examples of IT-categories. Let us also remark that there

is an extensive literature that studies a wide spectrum of categories which are close in their structure to
IT-categories [29, 30, 31, 32, 33, 34, 23].

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 2 № 1 2002



MONOIDAL KLEISLI CATEGORY AND INFORMATION TRANSFORMERS THEORY 83

REFERENCES
1. Sacksteder R. A Note on Statistical Equivalence. Ann. Math. Statist., 1967, vol. 38, no. 3, pp. 787–795.

2. Morse N., Sacksteder R. Statistical Isomorphism. Ann. Math. Statist., 1966, vol. 37, no. 2, pp. 203–214.

3. Chentsov N.N. Statistical Decision Rules and Optimal Inference [in Russian].Moscow: Nauka, 1972.

4. Chentsov N.N. Categories of Mathematical Statistics. Dokl. Akad. Nauk SSSR, 1965, vol. 164, no. 3, pp. 511–514.

5. Golubtsov P.V. Measurement Systems: Algebraic Properties and Informativity. Pattern Recognition and Image
Analysis, 1991, vol. 1, no. 1, pp. 77–86.

6. MacLane S. Categories for the Working Mathematician. New York: Springer, 1971.

7. Herrlich H., Strecker G.E. Category Theory. Boston: Allyn and Bacon, 1973.

8. Arbib M.A., Manes E.G. Arrows, Structures and Functors. New York: Academic Press, 1975.

9. Goldblatt R. Topoi. The Categorial Analysis of Logic. Amsterdam: North-Holland, 1979.

10. Golubtsov P.V. Informativity in the Category of Linear Measurement Systems. Probl. Inf. Transm., 1992, vol. 28,
no. 2, pp. 125–140.

11. Golubtsov P.V. Relative Informativity and a Priori Information in the Category of Linear Information Transformers.
Probl. Inf. Transm., 1995, vol. 31, no. 3, pp. 195–215.

12. Golubtsov P.V., Filatova S.A. Multivalued Measurement-Computer Systems. Mat. Model., 1992, vol. 4, no. 7,
pp. 79–94.

13. Golubtsov P.V. Informativity in the Category of Multivalued Information Transformers. Probl. Inf. Transm., 1998,
vol. 34, no. 3, pp. 259–276.

14. Golubtsov P.V. Theory of Fuzzy Sets as a Theory of Uncertainty and Decision-Making Problems in Fuzzy
Experiments. Probl. Inf. Transm., 1994, vol. 30, no. 3, pp. 232–250.

15. Golubtsov P.V. Fuzzy Logical Semantics of Bayesian Decision Making. Applications of Fuzzy Logic Technology
II. SPIE Proceedings. Vol. 2493., Orlando, Florida, 1995, pp. 228–239.

16. Golubtsov P.V. Categories of Information Transformers and the Concept of Informativity. Proc. Int. Conf. on
Informatics and Control (ICI&C’97). Vol. 2, St.-Petersburg, Russia, 1997., pp. 512–517.

17. Golubtsov P.V. Axiomatic Description of Categories of Information Transformers. Probl. Inf. Transm., 1999,
vol. 35, no. 3, pp. 80–99.

18. Kleisli H. Every Standard Construction is Induced by a Pair of Adjoint Functors. Proc. Amer. Math. Soc., 1965,
vol. 16, pp. 544–546.

19. Barr M., Wells C. Toposes, Triples and Theories. New York: Springer, 1984.

20. Borovkov A.A. Mathematical Statistics. Supplementary Chapters. [in Russian].Moscow: Nauka, 1984.

21. Blackwell D. Comparison of Experiments. Proc. Second Berkeley Sympos. on Mathematical Statistics and Prob-
ability., University of California Press, 1951, pp. 93–102.

22. Blackwell D. Equivalent Comparison of Experiments. Ann. Math. Statist., 1953, vol. 24, no. 2, pp. 265–272.

23. Manes E.G. A Class of Fuzzy Theories. J. Math. Anal. and Appl., 1982, vol. 85, pp. 409–451.

24. Blackwell D., Girschick M.A. Theory of Games and Statistical Decisions. New York: Wiley Sons, 1954.

25. Giry M. A Categorical Approach to Probability Theory. Categorical Aspects of Topology and Analysis. Lecture
Notes in Mathematics. No. 915., Berlin: Springer-Verlag, 1982, pp. 68–85.

26. Neveu J. Bases Mathematiques du Calculus des Probabilites. Paris: Masson et Cie, 1964.

27. Barra J.-R. Notions Fondamentales de Statistique Mathematique. Paris: Dunod, 1974.

28. Pyt’ev Yu.P. Reduction Problems in Experimental Research.Mat. Sb., 1983, vol. 120, no. 2, pp. 240–272.

29. Goguen J.A. L-Fuzzy Sets. J. Math. Anal. and Appl., 1967, vol. 18, pp. 145–174.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 2 № 1 2002



84 GOLUBTSOV

30. Goguen J.A. Categories of V-Sets. Bull. Amer. Math. Soc., 1969, vol. 75, pp. 622–624.

31. Goguen J.A. Concept Representation in Natural and Artificial Languages: Axioms, Extensions, and Applications
for Fuzzy Sets. Int. J. Man-Machine Studies, 1974, vol. 6, pp. 513–561.

32. Arbib M.A., Manes E.G. Fuzzy Machines in a Category. Bull. Austral. Math. Soc., 1975, vol. 13, pp. 169–210.

33. Arbib M.A., Manes E.G. Fuzzy Morphisms in Automata Theory. Category Theory Applied to Computation and
Control. Lecture Notes in Computer Science. No. 25., New York: Springer-Verlag, 1976, pp. 80–86.

34. Manes E.G. Algebraic Theories. New York: Springer, 1976.

This paper was recommended for publication by V.A.Lyubetsky, a member of the Editorial Board

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 2 № 1 2002


