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Abstract—We give a mathematical analysis of a model previously introduced for image restoration.
This model combines wavelet approaches and total variation approaches in a natural way. We prove
the existence of a solution to the model. Then we show a way to approximate it in such a way that the
approximation can be computed (this is done by penalization). We also show a simple experiment which
illustrates why the model seems promising.

1. INTRODUCTION

We address in this paper the issue of image restoration. More precisely, we assume an image v ∈ L2(T)
(T is the torus in dimension 2) is obtained from the observation of a landscape, modeled by a function
u ∈ L2(T), using a measurement tool. The degradation of this measurement tool is itself modeled by

v = H(u) + b

where H is a linear and continuous operator from L2(T) into itself and b is a Gaussian noise. For instance,
this includes the case of a convolution with a kernel h ∈ L1(T)
This inverse problem has been widely studied and until now mostly two kinds of approach have been

developed and opposed: the wavelet type approach and the variational ones. Among variational approaches,
those based on the minimization of the total variation, as introduced in [20], are often considered as being the
most efficient (see [2,4,9,14,17,18]). On the other hand, wavelet soft-thresholding methods was introduced
by Donoho and Johnstone and are studied and extended in several papers (see [6, 7, 12, 13, 19, 21]). They
somewhat are an extension of Fourier based methods such as Wiener one [1]. Note that recently some
attempts have been made to combine both approaches [3, 5, 8, 21].
This paper complements a previous one (see [16]). It contains mathematical proves of some theorems (in

Section 2) stated there and a simple and comprehensive experiment (in Section 3).
In [16], we exposed a natural way to combine wavelet types and variational methods. We say “natural”

since it appears that both kinds of approach can be expressed in a unique framework. This framework is then
used to combine them.
This model simply consists in looking for a solution of

Minimize,
∫

T |∇w| (1)
under the constraint (H(w)− v) ∈ ND,τ

1 This work was started while I participated to the “Geometrically Based Motion” program of the “Institute for Pure and Applied
Mathematics”, continued while I was supported by the grant ONR-N00014-97-1-0027 and finished while I was at the Université
Paris 13.
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where
∫

T |∇w| is the total variation and

ND,τ = {w ∈ L2(T),∀Ψ ∈ D, |〈w,Ψ〉| ≤ τ}

for a dictionary D = {Ψl}l∈I of functions of L2(T) (typically wavelets).
Note that we abuse of the notation

∫
T |∇w| since mathematically ∇w (or more precisely the weak

derivatives of w) is a Radon measure. The total variation should therefore be understood as the total mass of
this Radon measure: |Dw|(T). However, when w is continuously differentiable |Dw|(T) =

∫
T |∇w|. One

can refer to [10] for a description of the total variation as well as for theorems used in this paper. We would
like to recall three important properties of the total variation:

– it is lower semicontinuous
– On the space BV (T) = {w ∈ L1(T),

∫
T |∇w| < ∞},∫

T
|∇w|+

∫
T
|w|

is a norm and this normed space satisfies a compactness property.
– Poincare inequality holds in BV (T).

Again, if the reader is not familiar with these notions he can refer to [10] where they are properly stated and
proved.

In the following, ‖w‖p refers to the norm in Lp(T):
(∫

T |w|
p
) 1

p .

2. MATHEMATICAL ANALYSIS OF THE MODEL

In this section, we are going to show that the proposed model has a solution which can be approximatively
computed.

Theorem 1. Let v ∈ L2(T) andH be a linear operator continuous fromL2(T) into itself. LetD ⊂ L2(T)
and τ > 0. Assume that BV (T) ∩ {w ∈ L2(T),H(w) − v ∈ ND,τ} 6= ∅ and that there exists C > 0
such that for any w ∈ {w ∈ L2(T),H(w) − v ∈ ND,τ}, |

∫
T w| ≤ C. Then (1) admits a solution

u∞ ∈ BV (T) ∩ {w ∈ L2(T),H(w)− v ∈ ND,τ}.

Proof. Since BV (T) ∩ {w ∈ L2(T),H(w) − v ∈ ND,τ} 6= ∅, we can build a sequence (un)n∈N such
that

∀n ∈ N, un ∈ {w ∈ L2(T),H(w)− v ∈ ND,τ}

and lim
n→∞

∫
T
|∇un| = inf

w∈{w∈L2(T),H(w)−v∈ND,τ}

∫
T
|∇w|

Since
(∫

T |∇un|
)
n∈N converges and is positive, there exists C ′ ∈ R such that for any n ∈ N

0 ≤
∫

T
|∇un| ≤ C ′

Moreover, since there exists C > 0 such that for any w ∈ {w ∈ L2(T),H(w) − v ∈ ND,τ}, |
∫

T w| ≤ C,
Poincare’s inequality (see [10], pp189) ensures us that there exists C ′′ > 0 such that

‖un‖2 ≤ C ′′

Moreover, since T is compact, we are sure that ‖un‖1 is also bounded. Therefore, because of compactness
of BV (T) (see [10], pp 176) and L2(T), there exists a sub-sequence (uf(n))n∈N of (un)n ∈ N (here f is an
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increasing function going from N into itself) which converges in L1(T) and converges weakly in L2(T) to
a function u∞ ∈ L2(T) (and therefore in L1(T)).
Let us show that u∞ is a solution to (1).
Since H is continuous from L2 into itself, there exists H∗ linear and continuous from L2(T) into itself

such that for any w1 and w2 in L2(T)

〈H(w1), w2〉 = 〈w1,H
∗(w2)〉.

Therefore, for any Ψ ∈ D,

|〈H(u∞)− v,Ψ〉| = |〈H(u∞),Ψ〉 − 〈v,Ψ〉|
= |〈u∞,H∗(Ψ)〉 − 〈v,Ψ〉|
= | lim

n→∞
〈uf(n),H

∗(Ψ)〉 − 〈v,Ψ〉|

= lim
n→∞

|〈H(uf(n))− v,Ψ〉| ≤ τ

So u∞ ∈ {w ∈ L2(T),H(w) − v ∈ ND,τ}. Moreover, since (uf(n))n∈N converges in L1(T) to u, lower
semi-continuity in BV (T) (see [10], pp 172) ensures us that∫

T
|∇u∞| ≤ lim inf

n→∞

∫
T
|∇uf(n)| = inf

w∈{w∈L2(T),H(w)−v∈ND,τ}

∫
T
|∇w|

and u∞ is a solution of (1).

Note that the fact that there exists C > 0 such that w ∈ {w ∈ L2(T),H(w)− v ∈ ND,τ}, |
∫

T w| ≤ C is
obviously satisfied when there existsϕ ∈ D such that 〈u, 1|T〉 = 〈H(u), ϕ〉 (or there exists (αn)n∈N ∈ l1(N)
such that this ϕ satisfies ϕ =

∑
n∈N αnΨn for some Φn ∈ D). For instance whenH is a convolution with a

kernel h whose Fourier transform satisfies ĥ(0, 0) 6= 0, putting 1|T (or 1
ĥ(0,0)

1|T) in D suffices.

Note also that in the case of a convolution, if ĥ(0, 0) = 0, we can simply replace the minimizing sequence
(un)n∈N by (vn = un −

∫
T un)n∈N. It is clear that (vn)n∈N is still a minimizing sequence and that we can

follow the proof above and show that it converges (up the extraction of a sub-sequence). The same argument
applies to the proof of the next theorem. This shows that our hypotheses could be sharper.
We can unfortunately not guaranty the uniqueness of the solution to (1). Indeed neither{w ∈ L2(T),H(w)−

v ∈ ND,τ} nor the total variation are strictly convex. However, we could state with this regard some results
similar to the one given in [2] and [9].
In order to find a solution to (1), we could of course use a relaxation method, but it might converge very

slowly. We could also use a projected steepest descent algorithm but, at each iteration, the projection needs
a lot of calculus and can probably be compared to a matching pursuit. This leads us to define a method by
penalization.

Theorem 2. Let v ∈ L2(T) andH be a linear operator continuous fromL2(T) into itself. LetD ⊂ L2(T)
be a countable set and τ > 0. Assume that BV (T) ∩ {w ∈ L2(T),H(w) − v ∈ ND,τ ′} 6= ∅ for a τ ′ < τ
and that there exists C > 0 such that for any w ∈ {w ∈ L2(T),H(w)− v ∈ ND,τ}, |

∫
T w| ≤ C. Then, for

any ε > 0,

Eε(w) =
∫

T
|∇w|+ 1

ε

∑
Ψ∈D

(
sup (|〈H(w)− v,Ψ〉| − τ, 0)

)2
(2)

has a solutionwε ∈ BV (T)∩L2(T). Moreover, we can extract a sequence (wεn)n∈N (with limn→∞ εn = 0)
that converges in L1(T) and converges weakly in L2(T) to a function w0 ∈ BV (T)∩{w ∈ L2(T),H(w)−
v ∈ ND,τ}. w0 is solution to (1).
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Proof. The proof is decomposed into the following steps:

1. There exists a wε ∈ BV (T) ∩ L2(T) minimizing (2).
2. There exists w0 ∈ L2(T) and a sub-sequence (wεn)n∈N (with limn→∞ εn = 0) of (wε)ε∈R such that the
sub-sequence converges in L1(T) and converges weakly in L2(T) to w0.

3. w0 ∈ {w ∈ L2(T),H(w)− v ∈ ND,τ}.
4. w0 is a solution to (1).

Proof of 1.This proof follows the same sketch as the one of Theorem1. First, note that sinceBV (T)∩{w ∈
L2(T),H(w) − v ∈ ND,τ} 6= ∅, we can build a minimizing sequence (wn

ε )n∈N. Moreover, since Eε(wn
ε )

converges, it is bounded by a constant C ′. Therefore, the total variation
∫

T |∇wn
ε | is itself bounded by C ′.

Let us show that the mean of wn
ε is bounded. With that in mind, let us consider wint ∈ BV (T) ∩ {w ∈

L2(T),H(w)− v ∈ ND,τ ′} and note

λn
ε = sup

Ψ∈D
|〈H(wn

ε )−H(wint),Ψ〉|.

Note that either λn
ε < τ − τ ′, in which case wn

ε ∈ {w ∈ L2(T),H(w) − v ∈ ND,τ} and |
∫

T wn
ε | ≤ C, or

λn
ε ≥ τ − τ ′. Note also that we have,

λn
ε ≤

√
εC ′ + τ + τ ′,

since, for any Ψ ∈ D,

|〈H(wn
ε )−H(wint),Ψ〉| = |〈H(wn

ε )− v,Ψ〉 − 〈H(wint)− v,Ψ〉|
≤ sup (|〈H(wn

ε )− v,Ψ〉| − τ, 0) + τ + τ ′

≤
√

εC ′ + τ + τ ′.

In the case where λn
ε ≥ τ − τ ′, we consider

w′ = wint +
τ − τ ′

λn
ε

(wn
ε − wint). (3)

By construction, we have

|〈H(w′)− v,Ψ〉| ≤ |〈H(wint)− v,Ψ〉|+ τ − τ ′

λn
ε

|〈H(wn
ε )−H(wint),Ψ〉|

≤ τ ′ +
τ − τ ′

λn
ε

λn
ε = τ.

So
|
∫

T
w′| ≤ C.

This permits us to conclude that

|
∫

T
wn

ε | ≤ |
∫

T
wint|+

λn
ε

τ − τ ′
|
∫

T
(w′ − wint)| ≤ C +

√
εC ′ + τ + τ ′

τ − τ ′
2C

So, there exists C ′′ > 0, such that for all n ∈ N

|
∫

T
wn

ε | ≤ C ′′.

Therefore, wn
ε is bounded in BV (T), L2(T) and L1(T) (since T is compact). So there exists a sub-

sequence (wf(n)
ε )n∈N of (wn

ε )n∈N and a function wε ∈ L2(T) such that (wf(n)
ε )n∈N converges in L1(T) and

converges weakly in L2(T) to wε.
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A reasoning similar to the one of the proof of Theorem 1 permits to conclude that

|〈H(wε)− v,Ψ〉| = lim
n→∞

|〈H(wf(n)
ε )− v,Ψ〉|

so (up to a sub-sequence)∑
Ψ∈D

(
sup (|〈H(wε)− v,Ψ〉| − τ, 0)

)2
= lim

n→∞

∑
Ψ∈D

(
sup

(
|〈H(wf(n)

ε )− v,Ψ〉| − τ, 0
))2

and ∫
T
|∇wε| ≤ lim inf

n→∞

∫
T
|∇wf(n)

ε |.

Therefore, wε ∈ BV (T) ∩ L2(T) and minimizes Eε(w).
Proof of 2. This proof is in fact almost identical to the previous one. Indeed, note first that taking notations

defined above, for any ε > 0

Eε(wε) ≤ Eε(wint) =
∫

T
|∇wint| = C ′

We can define
λε = sup

Ψ∈D
|〈H(wε)−H(wint),Ψ〉|.

and once again, we have
λε ≤

√
εC ′ + τ + τ ′.

Then, we can build w′ using the analogue of (3) and use it to prove that there exists C ′′ > 0 such that for
any ε > 0

|
∫

T
wε| ≤ C ′′

We can therefore extract a sub-sequence (wεn)n∈N (with limn→∞ εn = 0) and there exists w0 ∈
L2(T) ∩ L1(T) such that (wεn)n∈N converges in L1(T) and converges weakly in L2(T) to w0.
Proof of 3. First, note that because of the weak L2(T) convergence

|〈H(w0)− v,Ψ〉| = lim
n→∞

|〈H(wεn)− v,Ψ〉|

Let us now assume |〈H(w0) − v,Ψ〉| > τ for a given Ψ ∈ D and let τ0 be such that |〈H(w0) − v,Ψ〉| >
τ0 > τ . We know that there exists N > 0 such that for all n > N

|〈H(wεn)− v,Ψ〉| > τ0.

Therefore,

Eεn(wεn) ≥ 1
εn

(τ0 − τ)2.

and therefore grows to infinity with n. This contradict the fact that

Eεn(wεn) ≤ Eεn(wint) =
∫

T
|∇wint|.

So for any Ψ ∈ D
|〈H(w0)− v,Ψ〉| ≤ τ.
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Proof of 4.We remark first that for any w ∈ {w ∈ L2(T),H(w)− v ∈ ND,τ}∫
T
|∇wεn | ≤ Eεn(wεn) ≤ Eεn(w) =

∫
T
|∇w|.

Moreover, lower semi-continuity in BV (T) once again ensures us that∫
T
|∇w0| ≤ lim inf

n→∞

∫
T
|∇wεn |.

So, w0 is a solution to (1).

3. EXPERIMENTS

In this section we will describe a denoising experiment with a synthetic image. Readers interested in
deblurring or in seeing experiments on natural images are referred to [16]. The algorithm used to solve (1)
is also described in [16].
In the experiments, we start from an initial image which is made of a Heavyside function (of amplitude

130). To this Heavyside function, we add two wavelet packets of approximative amplitude 160 (both wavelet
packets are located in high frequency). This is our initial image which is displayed on the left side of Figure
1. The noisy image is obtained by adding to the initial image a Gaussian noise of standard deviation σ = 40.
It is displayed on the right side of Figure 1.

Fig. 1. Left: the initial image (the black line is the one extracted for Figure 2 and 3). Right: The noisy image.

Then, we restore this image. For the display, we only represent an extracted line of reconstructed images.
The location of the extracted line is represented by the black line on Figure 1. The extracted lines are then
displayed on Figure 2 and 3. Note that we used the lower part of the images to tune the methods parameters
in such a way that homogeneous zones look about the same (when possible) or have about the same mean
squared error with the initial image.
On Figure 2, we would like to illustrate how badly wavelet basis are adapted to the reconstruction of such

an image. This is basically due to the fact that the twowavelet packets we added to the Heavyside function are
badly represented in a wavelet basis. Typically, they are represented by a lot of small correlated coefficients
(versus one large coefficient in an appropriate wavelet packet basis). Therefore, the comparison between
Figure 2 and Figure 3 highlights the advantage of considering a dictionary. Indeed, this latter enables us to
preserve several kinds of structure. Note that we do not claim here that wavelet packet bases are better than
wavelet bases. We only claim that for images with different kinds of structure constraints using dictionaries
are better than constraints using one basis.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 2 № 1 2002
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Fig. 2. Extracted lines from images. From up to down: the initial image; the noisy image; the denoised image with a
wavelet thresholding; a solution of (l) when the dictionary is made of one wavelet basis.

Here is the description of Figure 2. Once again, the represented signals are extracted lines from images.
The images are (from up to down):

– The initial image.
– The noisy image.
– The image obtained when doing a cycle-spinning wavelet soft-thresholding of wavelet coefficients in a
basis constructed with a cubic spline wavelet. The basis is of depth 3 and the threshold values 140.

– A solution of (1) with a dictionary containing only the wavelet basis described for the preceding image.
The parameter τ also values 140.

We can see on this figure that none of the restoration retrieves the wavelet packets. However, the
restoration with (1) permits to obtain a sharper edge. This is basically due to the fact that it does not fill with

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 2 № 1 2002
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0 all the small wavelet coefficients and that some of them contributes to both the sharpness of the edge and
the erasure of the ringing artifact.

Fig. 3. Extracted lines from images. From up to down: the noise selection approach in a wavelet packet dictionary; a
solution of (l) with a wavelet packet dictionary; Rudin-Osher-Fatemi method.

On Figure 3, we display extracted lines of the following images (from up to down):

– The restoration using the “noise selection” approach which is described in [15]. We would like to mention
that since we wrote this paper, we discovered that identical ideas had been published in [11] and [22].
This method is basically an adaptation of wavelet soft-thresholding to dictionaries. We apply it with a
wavelet packet dictionary made of all the wavelet packet bases of full depth 1, 2 and 3. Once again, we
use a cubic spline. The parameter τ values 160.

– The restoration according to (1) with the dictionary described for the preceding method. τ values 160.
– TheRudin-Osher-Fatemi (see [20])method 1with a parameterλ = 0.05. Note that we tuned this parameter
in order to have about the same result as in the preceding image far from thewavelet packets.We recall that
Rudin-Osher-Fatemi method corresponds to a solution of (1) when takingD = {w ∈ L2(T), ‖w‖2 = 1}.

1 The Rudin-Osher-Fatemi method consists in minimizing∫
T
|∇w|+ λ

∫
T
|w − v|2.
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We can see on this results that both methods which use a wavelet packet dictionary somewhat retrieves the
wavelet packets. However, the one using the total variation once again has a sharper edge. On the restoration
with D = {w ∈ L2(T), ‖w‖2 = 1} (the Rudin-Osher-Fatemi method), we see that since we restrict the
move identically in interesting direction (here the two wavelet packets) and in uninteresting directions (for
instance b

‖b‖2 ), we need to erase the wavelet packets to erase the noise. However, it is sharper than the
image of the top. This highlights that taking a too large dictionary (especially when it contains uninteresting
directions) yields to a large parameter τ . (1) becomes then less efficient.
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