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Abstract—Deterministic fluid models imitate the long-term behavior of stochastic queueing networks.
We address the problem of unique solvability of these models under arbitrary time-dependent workloads.
This property is stronger than the stability under a constantworkload; in particular, it ensures the “smooth”
behavior of the network under supernominal inflows. Sufficient conditions of unique solvability may be
expressed in terms of Lipschitz constants of open networks in various norms. We find precise Lipschitz
constants of a single multiclass server station under FIFO, generalized processor sharing, and priority
service disciplines. The best possible Lipschitz constant for a two-class server is proved to be given
by a queue-equalizing discipline. For proofs we use the technique of hysteresis operators, in particular,
polyhedral Skorokhod problems.

1. INTRODUCTION

The problem of stability of fluid models of stochastic queueing networks was drawing considerable
attention ever since the appearance of surprising examples of unstable networks that satisfy the nominal
stability conditions, see [2, 13, 16, 17]. These counterexamples demonstrate the existence of diverging
solutions of the fluid model while the trivial solution with empty queues also exists. This is a particular case
of multiple solutions of a fluid model under a linear inflow but not the only one, see [9].
The property of stability of a fluid model under a subnominal workload is, under mild assumptions,

equivalent to the property of unique solvability of this model under the same workload. Indeed, a trivial
solution with empty queues exists in this case and the existence of any nontrivial solution implies instability.
Vice-versa, for an unstablemodel, by simple compactness and homogeneity considerations, one can construct
a non-trivial solution from zero.
The property of unique solvability under any continuous inflow is a stronger one and it can give us

more insight into the behavior of the queueing network. Namely, this property would guarantee that during
periods of supernominal inflow the queues behave in a predictable manner demonstrating, for instance, no
auto-oscillations under a smoothly changed workload.
The goal of this research is to find maximally tight sufficient conditions of unique solvability of several

common fluid models such as FIFO, priority, and generalized processor sharing (GPS) ones. We realize that
this problem, in general, might be a hard one (apart from special cases like Jackson models) as is also the
case with the stability problem. The importance of the unique solvability property, however, justifies the
attempt.
1 This work was partially supported by grant 03-01-00258 of the Russian Foundation for Fundamental Research, by grant for
Scientific Schools 1532.2003.1 of the President of Russian Federation, and by the project “Development of mathematical
methods of analysis of distributed asynchronous computational networks” of the program of fundamental research of OITVS
RAN (Branch of Information Technologies and Computer Systems of RussianAcademy of Sciences) “New physical and structural
methods in infocommunications”.
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Some progress for FIFO networks was reported in [9], where sufficient conditions for the uniqueness in
the restricted class of linear solutions of a reentrant line were derived.
We suggest several methods of research. First, for finite-dimensional disciplines like the priority disci-

plines, processor sharing disciplines, and their combinations, the dynamics of the fluid model is described
by a Skorokhod problem on the positive orthant and one may use known criteria of unique solvability of
Skorokhod problems and, more generally, sweeping processes that are, in turn, particular cases of hysteresis
operators, see [15, 14, 10, 12].
Such service disciplines as FIFO and LIFO, however, cannot be modelled by a finite-dimensional

Skorokhod problem because their state spaces are essentially infinite-dimensional. Another option is to
find the Lipschitz constant of a single server input-output operator in an appropriate norm and then to find
conditions on the routing matrix R that would ensure the unique solvability of the network. For instance,
LW LR < 1 is such a condition, where LW is the Lipschitz constant of the network without feedback, that
is, of the parallel combination of all servers, and LR is the norm of the linear operator R in an appropriate
space.
We demonstrate that a single server with two classes of customers of equal viscosity and the FIFO

discipline has the precise Lipschitz constant 3 for the max-norm ‖x(·)‖ = maxt,i |xi(t)|. For k classes, we
get L = 2k − 1, which is also true for k = 1.
The Lipschitz constants in the max-norm for the priority and the GPS disciplines happen to be exactly

the same as for the FIFO discipline, that is, 2k − 1 for k classes of customers. We do not know if this is just
a coincidence or there exists a special property of these disciplines that ensures this value of the Lipschitz
constant.
The theoretical lower bound for the Lipschitz constant among all work-conserving disciplines is found to

be 2, and it is realized by the queue-equalizing discipline that always gives priority to the class of customers
with the longest queue.
Fluid models of queueing networks become particular cases of so called hysteresis operators (possibly,

multivalued) if the notion of variable service effort is included into the model (this is the maximal amount
of customers that can be served up to time t). The input-output fluid operators, apart from characteristic hys-
teresis properties of rate-independence and causality, possess also the homogeneity property (characteristic
for unrestricted fluid models) and, in some cases, the short-memory property. For the research of Lipschitz
continuity of fluid operators we use basic properties of short-memory hysteresis operators.
The authors wish to thank A. Rybko and S. Pirogov for valuable discussions and remarks concerning this

work.

2. FLUID MODELS OF QUEUEING NETWORKS

2.1. Queueing Networks

A queueing network (QN) consists of a finite number of server stations that serve incoming customers
and then reroute them to other stations (including itself) or to the exit. The throughput of the server at each
station is limited, so the customers that have arrived at the station and cannot be served immediately wait in
the queue. The whole process is, in general, stochastic.
For a multiclass QN, customers of a finite number of classes i ∈ J = {1, . . . , k} are circulating in the

network. Each class may be present at a unique server station, but at a given station more than one class may
be present. A service discipline at a given station is used for the choice of the next customer from the queue
as soon as the previous one is released. For each class of customers, its service time distribution is given.
After being served at the station, the customer of class i ∈ J changes its class to j ∈ J̄ = {0, 1, . . . , k}
according to the routing policy of the station and goes to the corresponding station or to the exit if j = 0.
For a general description of multiclass queueing networks see [3, 4, 7, 8].

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 3 № 2 2003



140 Nedaiborshch, Nikolaev, Vladimirov

A fluid model (FM) is a deterministic analogue of a QN whose set of solutions contains all the Euler
limits of the original stochastic model, see, for instance, [16, 4, 18]. In this paper we study the properties of
fluid models.
In order to describe the fluid dynamics of the network, it suffices to do that for each node separately. This

is the same as to describe the service discipline plus the routing rule for this node or to specify the set of all
solutions at the node, that is, of all possible combinations of flows vj(·), fji(·), j ∈ J(i), through node i for
any given initial queue x0

i = (x0
1, . . . , x

0
ni

). Here vj(t) is the mass of fluid j that came to the server up to
time t (hence, a nondecreasing function) and fji(t) is the mass of fluid that has changed class from j to i up
to time t.
The routing rule is usually given by a k×k routing matrixR such that rij ≥ 0,

∑
j rij ≤ 1, 1 ≤ i, j ≤ k.

Some of the most popular service disciplines are described below. Fluid limits and fluid models were
introduced in [16], see also [4, 18].

2.2. The FIFO Discipline

The work of a single FIFO server with incoming fluids ui(t) of k classes and a single service effort s(t)
can be formalized as follows. First, let us assume that the server capacity is the same for all classes of fluid
(one also says that their viscosities are equal). The cumulative outflow w(t) = w1(t) + · · ·+ wk(t) is found
explicitly by the formula

w(t) = W [u(·), s(·)](t) = inf
τ≤t

[u(τ) + (s(t)− s(τ))], (2.1)

where u(t) = u1(t) + · · ·+ uk(t). This is a standard way to describe the deterministic service process at a
single server, see [1]. Below we derive (2.1) as a limit of discrete-time processes with vanishing lengths of
customers.
The functions ui(t) and s(t) are nondecreasing at [0, T ] and we will usually assume them to be right-

continuous. For discontinuous inflows, the FIFO service rule should be supplemented by a rule that would
handle the case of simultaneous arrivals. Another option is to allow multiple outputs for the same input and,
hence, to consider a multivalued input-output map.
The value of u(t) is equal to the cumulative mass of fluid that has arrived at the server station up to time

t. Thus, we consider the situation with empty queues at t = 0. If all the flows are continuous, the range of
u(t), 0 ≤ t ≤ T , is the segment [0, u(T )]. For each u ∈ [0, u(T )], denote by Ui(u) the value of ui(t), where
u(t) = u. Such a t is not unique, in general, but the values Ui(u) are uniquely determined on [0, u(T )],
nondecreasing, and Lipschitz continuous with constant 1:

0 ≤ Ui(u+ − u−) ≤ u+ − u−, 0 ≤ u− ≤ u+ ≤ u(T ).

The specific outflows wi(t) are found now as

wi(t) = Ui(w(t)), w(t) = W [u(·), s(·)](t), 0 ≤ t ≤ T, i = 1, . . . , k.

They are right-continuous (continuos) functions whenever u(·) and s(·) are right-continuous (continuos).

2.3. Priority Disciplines

Let, again, the inflows ui(t) of k classes of fluid be given. Let the lower indices have priority over the
higher ones. The outflows wi(t) under the service effort s(t) are then defined as follows. The first fluid
behaves as there were no other fluids: w1(t) = W [u1(·), s1(·)](t), t ≥ 0, where s1(t) = s(t), t ≥ 0, by
definition. Then we set s2(t) = s1(t)− w1(t) and define recursively

wi(t) = W [ui(·), si(·)](t), si(t) = si−1(t)− wi−1(t), i = 2, . . . , k.
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2.4. Generalized Processor Sharing

The generalized processor sharing (GPS) service discipline is characterized by the weight vector p =
(p1, . . . , pk), pi ≥ 0,

∑
i=1,...,k pi = 1. Normally, the processor (server) shares its service effort among the

k classes proportionally to their weights. In each class, the customer with the earliest arrival time is served.
If one or more classes are empty at a given time, their shares of service effort are distributed among the other
ones proportionally to their weights.
This discipline was thoroughly studied in [6]. The fluid model for a single server is described by a

Skorokhod problem with oblique reflection on the positive orthant. The input-output operator is Lipschitz
continuous in the max-norm ‖u(·)‖ = supt∈[0,T ] |u(t)| for continuous inputs and outputs, and this result can
be extended to the space of llrc (left-limit right-continuous) functions with the same norm.

2.5. General Uniqueness Theorems

The contraction principle can be used for the proof of unique solvability of a fluid model under a given
initial condition. Let us first consider the set of all nodes of the network without feedback and suppose that
we know the Lipschitz constant LW of the corresponding input-output operator W with respect to some
norm ‖ · ‖ in the k-dimensional functional space of flows. Suppose we also know the norm LR of the routing
matrix R as a linear operator in the same space. We have

w(·) = W (u(·) + Rw(·)) (2.2)

for any solution w(·) of the fluid model, where u(·) is the exogenous inflow.
Suppose two different solutions w(·) and w′(·) exist for the same inflow u(·). Then from (2.2) we get

‖w′(·)− w(·)‖ ≤ LW LR‖w′(·)− w(·)‖.

This gives us a simple sufficient condition of unique solvability of the fluid model: LW LR < 1.
Thus, a construction of a sufficient condition of unique solvability for a fluid network may proceed as

follows. First, an appropriate norm is chosen in the space of flows. Then upper bounds for the Lipschitz
constants of single servers should be found. From these, an upper bound LW for the Lipschitz constant of
the whole network without feedback, that is, for the the parallel composition of all the nodes, is derived.
Then we know that the model is uniquely solvable under each inflow if LW LR < 1.
The above condition is rather rough and far from being tight in many cases. Its advantage is, however, in

its universality. In particular, it can be applied to networks with mixed service disciplines and variable service
effort. Our next goal is to find Lipschitz constants of a single server under common service disciplines in
various norms.

3. SINGLE-CLASS SERVERS

3.1. Time-dependent Single-Class Servers

Here we study the simplest elements of a queueing network, that is, single-class server stations. The
necessity to consider time-dependent inflow and service effort intensities is well justified by occurrence of
such phenomena in real networks. The situation can be modelled by a leaky bucket with a hole of variable
diameter. Another, formal reason in favor of time-dependent service efforts is that in this generality the fluid
operator becomes a rate-independent one, that is, a hysteresis operator which can often be studied by special
methods of nonlinear analysis [10, 11].
The dynamics of the server will be described by an input-output operatorW : {u(·), s(·)} → {w(·), x(·)}

(the initial queue length will be included in the input). Both the inflow u(t) and the service effort s(t) are
nondecreasing (deterministic) functions of t on the domain [0, T ]. Moreover, we assume u(0) ≥ 0 (the value
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of u(0) is interpreted as the initial queue at the server) and s(0) = 0. Without loss of generality we will
assume here T = 1. This can be achieved by a monotone change of time because of the rate-independence
property of operatorW (see below).
The outflow w(t) is, again, a nondecreasing function on [0, 1], w(0) = 0, and x(·) is a difference of

two nondecreasing functions because of the obvious balance relation x(t) = u(t) − w(t). Hence, x(t) is a
function of bounded variation on [0, 1] (its variation is bounded from above by, for instance, 2u(1)). The
same is, of course, true for the remaining components of input and output. A function of bounded variation
possesses finite left and right limits at each point of the interior of its domain [0, 1].
Now, we are ready to give a formal definition of the operator W . First, we will define the action of

W for step functions u(·) and s(·) and then extend the definition to the general case. Let a finite partition
0 = t0 < t1 < · · · < tk = 1 of the interval [0, 1] be given and let both u(·) and s(·) be step-functions
whose break points are ti, i = 1, . . . , k. For definiteness, let us assume them to be right-continuous (this,
in particular, means that u(·) and s(·) are continuous at t0 = 0). Both u(·) and s(·) are determined by their
values ui = u(ti), si = s(ti), i = 1, . . . , k. We will also use analogous notation for the outputs x(·) and
w(·).
The evolution of the system proceeds as follows. At each time instant ti, the amount ui − ui−1 of

customers is added to the queue and the amount si− si−1 is subtracted from the queue if the length of queue
xi−1 allows that, that is, if xi−1 + ui − ui−1 ≥ si − si−1. Otherwise, all the customers leave the system at
t = ti. This recursive rule can be written as

xi = max{0, xi−1 + (ui − ui−1)− (si − si−1)}, i = 1, . . . , k, (3.1)

and we set x0 = u0. According to the balance relation, we set wi = ui − xi, i = 0, . . . , k. Thus, the
operator W is well defined for all right-continuous piecewise constant (step) inputs, and the outputs are,
again, piecewise constant step functions.
We will extend the definition of operatorW to the spaceBV of functions of bounded variation as follows.

Using the notation p(t) = u(t)− s(t), q(t) = min{0, p(t)}, we set

x(t) = p(t)− inf
t0≤τ≤t

q(τ), (3.2)

w(t) = u(t)− x(t) = s(t) + min{0, inf
t0≤τ≤t

(u(τ)− s(τ))}. (3.3)

Obviously, for nondecreasing step functions u(·) and s(·), the definition (3.2)-(3.3) coincides with (3.1).
Note that the outputs are well defined for any pair (u(·), s(·)) of functions of bounded variation on [0, 1]
and that w(·) is nondecreasing on [0, 1], and x(·) is a function of bounded variation on [0, 1], though not
necessarily monotone.
In order to make formulas (3.2) and (3.3) more transparent, we will reduce them to the input-output

relations of elementary hysteresis operators, namely, of one-sided play and stop. The one-sided play operator
for the input u(t), 0 ≤ t ≤ 1, is defined as

Pu(t) = min{0, inf
τ∈[0,t]

u(τ)}, (3.4)

and the stop output is equal to
Su(t) = u(t)− Pu(t). (3.5)

Obviously, Pu(·) is always a nonincreasing function of t and Su(·) is nonnegative. Note that the operators P
andS arewell defined not only for inputs of bounded variation but for anyu(·) such that inft∈[0,1] u(t) > −∞.
For our needs, it will be sufficient to consider P and S on the space M of bounded functions defined on
t ≥ 0.
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The one-sided play and stop are examples of hysteresis operators, that is, they are causal (the output on
any initial time interval depends only on the input constrained to this interval, and not on the future) and
rate-independent (the pairs input-output withstand any monotone increasing continuous change of time, that
is, after such a change the resulting output is, again, the output of the corresponding hysteresis operator with
the resulting input).
The causality and rate-independence follow immediately from definitions. It is also important to notice

that, as a consequence of rate-independence, the operators P and S depend essentially only on the order
structure of the real axis, that is, they can be naturally extended to any linearly ordered set. In particular, it
is often instructive to study the properties of P and S on the set Z of integers.
The intuitive interpretation of these operators is as follows. The play operator models the motion of a

point on a straight line that is pushed by another point (the input) from the right, without inertia. The stop is
the same as the original (one-dimensional) Skorokhod problem, where the output point follows the motion
of the input point as long as the output is on the positive half-axis, and it stays equal to zero whenever the
motion of input point tries to drive it into the negative half-axis.
Now, for a single-class server, we may write that w(t) = s(t) + Pp(t) and x(t) = Sp(t), where

p(t) = u(t) − s(t). Let us study the basic properties of operators P and S. Note first that, apart from rate-
independence and causality that are inherent to all hysteresis operators, an additional property of homogeneity
holds for P and S, that is, if Z(·) = {u(·), s(·), x(·), w(·)} is an admissible flow on the server, then the
same is true for

αZ(·) = {αu(·), αs(·), αx(·), αw(·)}, α ≥ 0.

3.2. Lipschitz Constants

Let us address the continuity properties of P and S, in particular, their Lipschitz continuity constants.
The inputs and outputs of both operators will be considered as elements of two normed spacesM and BV
in all possible combinations. The spaceM consists of functions bounded on [0, 1]. The norm inM is given
by

‖u(·)‖ = sup
t∈[0,1]

|u(t)| (3.6)

The space BV consists of functions of bounded variation on [0, 1] and the norm in BV is

‖u(·)‖V = |u(0)|+ Var[0,1]u(·). (3.7)

(C1–C2) First, as operators from M ∩ BV with the induced norm from M to BV , both P and S are
discontinuous. As an example, let us consider u1(t) = −t and um

2 (t) = −1/m[mt], where [x] is the
maximal integer i ≤ x. As m → ∞, the series of functions wm

2 (·) = Pum
2 (·) ≡ um

2 (·) converges to
w1(·) = Pu1(·) ≡ u1(·) inM but not inBV because the variation of w1(·)−wm

2 (·) on [0, 1] remains equal
to 1 for eachm.
(C3) The play is Lipschitz continuouswith constant 1 forP acting fromM toM . Indeed, this is true for the

map u(·) → b(·), where b(t) = infτ∈[0,t] u(τ) and then, for the map b(·) → p(·), where p(t) = min{0, b(t)}.
(C4) The stop is Lipschitz continuous with constant 2 as an operator acting from M to M . The value

of 2 is an upper bound for the constant because Su(t) ≡ u(t)− Pu(t) and P is Lipschitz continuous with
constant 1. The following example demonstrates that this bound is precise, see Fig. 3.2.
(C5–C6) Let us prove that the play P is Lipschitz continuous with constant 1 from BV to both BV and

M . It suffices to demonstrate that

Var[0,1](x(·)− x′(·)) ≤ Var[0,1](u(·)− u′(·)) (3.8)

for any pair of inputs u(·), u′(·), u(0) = u′(0), and their outputs x(·), x′(·), x(0) = x′(0).
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Fig. 1. Lipschitz constant for S : M → M

Let us denote a(t) = u(t) − u′(t), b(t) = x(t) − x′(t) and choose a finite sequence of times 0 < t1 <
t2 < · · · < tk ≤ 1 such that

0 < b(t1) > b(t2) < b(t3) > . . . b(tk) or 0 > b(t1) < b(t2) > b(t3) < . . . b(tk).

For definiteness, we will consider the first case.
Since 0 ≥ x(t1) > x′(t1), for any ε > 0 there exists a t∗1 ∈ [0, t1] such that u′(t∗1) < x′(t1) + ε. From

u(t∗1) ≥ x(t∗1) we get
a(t∗1) = u(t∗1)− u′(t∗1) > b(t1)− ε.

Then, since x(t2) < x(t1), there exists a t∗2 ∈ (t1, t2] such that u(t∗2) < x(t∗2) + ε. We also have
u′(t∗2) ≥ x′(t∗2) ≥ x′(t2) and, hence,

a(t∗2) = u(t∗2)− u′(t∗2) < b(t2) + ε.

Proceeding in the same manner we conclude that

Var[0,1]a(·) ≥ Var[0,1]b(·)− nε− δ,

where

δ = Var[0,1]b(·)−
k∑

i=1

|b(ti)− b(ti−1)|.

Since both ε > 0 and δ > 0 can be taken arbitrarily small, we get inequality (3.8). The constant 1 is precise,
as follows from trivial examples.
(C7) It follows from above that the stop is Lipschitz continuous with constant 2 from BV to BV . The

example in Fig. 3.2 demonstrates that this constant is precise.
(C8) The stop is Lipschitz continuous from BV to M with constant 1. To prove it, let us show that the

inequality
|x(t)− x′(t)| ≤ Vart

0(u(·)− u′(·))

holds for any t ∈ [0, 1]. It obviously holds for t = 0. Then, suppose that it holds for ti and prove it for ti+1.
It suffices to notice that |x′(t) − x(t)| does not increase if the inputs u(·) and u′(·) are parallel, that is, if
u′(t) ≡ u(t) + c. The Lipschitz constant 1 is precise, as follows from trivial examples.
The Lipschitz constants for the server operators u(·) → x(·), u(·) → w(·) with the fixed service effort

s(·) and for s(·) → x(·), s(·) → w(·) with the fixed inflow u(·) can be easily derived from (C1)–(C8). One
of these results will be formulated as a lemma.
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Fig. 2. Lipschitz constant for S : BV → BV

Lemma 3.1. The operator u(·) → w(·) is a contraction in bothM and BV . The Lipschitz constant 1 is
tight in both cases.

For operators of type (u(·), s(·)) → (x(·), w(·)) with different combinations of norms for the input and
output, one should combine the results (C1)–(C8) according to the norms chosen.

4. LIPSCHITZ CONTINUITY OF 2-CLASS SERVER STATIONS

4.1. FIFO Servers

Let us set s(t) = t, t ≥ 0, and study the properties of the input-output operator F : u(·) → w(·). First,
we assume k = 2. Denote by C the space of continuous functions x(·) : [0, T ] → R2 with the max-norm

‖x(·)‖ = max
t∈[0,T ]

max
i=1,2

|xi(t)| (4.1)

and consider F as an operator from C to C.
The aggregate input-output operatorW : (u1(·) + u2(·)) → (w1(·) + w2(·)) also acts from C to C; it is

Lipschitz continuous with precise constant 1 according to Lemma 3.1.

Theorem 4.1. The operator F is Lipschitz continuous with the precise constant 3.

Proof. Since the class of solutions (u(·), w(·)) is invariant to transformations of the form ũ(t) = εu(t/ε),
w̃(t) = εw(t/ε) for any ε > 0, it suffices to prove that ‖u′(·)− u(·)‖ ≤ 1 implies ‖w′(·)− w(·)‖ ≤ 3. For
each t∗ ∈ [0, T ], there exist t, t′ ≤ t∗ such that w(t∗) = u(t) and w′(t∗) = u′(t′). Without loss of generality
we assume t′ ≥ t. Let us prove, say, that

|w′
1(t

∗)− w1(t∗)| ≤ 3. (4.2)

By Lemma 3.1, we have u(t)− 2 ≤ u′(t′) ≤ u(t) + 2. By monotonicity, we also get u′2(t′) ≥ u′2(t) and,
hence, u′2(t′) ≥ u2(t)−1. Sincew(t∗) = w1(t∗)+w2(t∗) = u1(t)+u2(t) andw′(t∗) = w′

1(t
∗)+w′

2(t
∗) =

u′1(t) + u′2(t), it follows that

w′
1(t

∗) = u′(t′)− u′2(t
′) ≤ u(t) + 2− u2(t) + 1 = w1(t∗) + 3.

On the other hand,
w′

1(t
∗) = u′1(t

′) ≥ u′1(t) ≥ u1(t)− 1 = w1(t∗)− 1,

and, hence, (4.2) follows.
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As an example, where the upper bound 3 is attained, let us consider a pair of piecewise linear inputs u(·),
u′(·) (their values are given at integer points t = 0, 2, 4, 6, 8 = T ):

u1(·) = (0, 1, 1, 3, 5), u2(·) = (0, 1, 1, 3, 3),
u′1(·) = (0, 2, 2, 4, 6), u′2(·) = (0, 2, 2, 2, 2),

that is, ‖u(·)− u′(·)‖ ≤ 1. The outputs are

w1(·) = (0, 1, 1, 2, 3), w2(·) = (0, 1, 1, 2, 3),
w′

1(·) = (0, 1, 2, 4, 6), w′
2(·) = (0, 1, 2, 2, 2),

and w′
1(8)− w1(8) = 3.

4.2. Another Norm

Let us consider the norm ‖x(·)‖s = maxt∈[0,T ](|x1(t)|+ |x2(t)|).

Theorem 4.2. The operator F is Lipschitz continuous with the precise constant 3 with respect to the
norm ‖ · ‖s.

Proof. Let ‖u′(·) − u(·)‖s ≤ 1. Again, we choose an arbitrary t∗ ∈ [0, T ] and t ≤ t′ ≤ t∗ such that
w(t∗) = u(t) and w′(t∗) = u′(t′). We have |(u1(t) + u2(t)) − (u′1(t) + u′2(t))| ≤ 1, t ∈ [0, T ], and, by
Lemma 3.1,

|(w1(t∗) + w2(t∗))− (w′
1(t

∗) + w′
2(t

∗))| ≤ 1.

Suppose that |w′
1(t

∗)− w1(t∗)|+ |w′
2(t

∗)− w2(t∗)| > 3. Then either w′
1 < w1 − 1 or w′

2 < w2 − 1. This,
however, is impossible because u′i(t

′) ≥ u′i(t) and |ui(t) − u′i(t)| ≤ 1, i = 1, 2. Hence, the operator F is
Lipschitz continuous in the norm ‖ · ‖s with constant at most 3.
In order to prove that this constant is precise, let us consider the piecewise linear inputs (the values are

taken at t = 0, 2, 4).
u1(·) = (0, 1, 3), u2(·) = (0, 0 → 2, 2),
u′1(·) = (0, 1, 3), u′2(·) = (0, 1, 1),

where u2(t) changes its value from 0 to 2 in a small neighborhood of t = 2.

Note that the norm of any routing matrix R induced by the norm ‖ · ‖s is less than or equal to 1, and the
upper bound for this norm is the maximal sum of elements in the columns of R.

4.3. The BV-norm for FIFO

Let us consider the norm ‖x‖BV = Var(x1) + Var(x2). In this norm the flow operator is not Lipschitz
continuous. Indeed, let us consider the inflow u1(t) = (t + sin t)/2, u2(t) = t− u1(t) to the unit capacity
server. The outflow w(·) coincides with u(·). Then we add a small amount of any fluid at some finite time
interval (this disturbance has a small BV-norm). The effect on the outflow at the long range is a small delay
of the periodic intensity function, but this implies the infinite BV-difference with the original output on
[0,+∞).

4.4. Priority Servers

Let k = 2, s(t) = t, t ∈ [0, T ], and ‖u′(·)− u(·)‖ ≤ 1. Then, by Lemma 3.1, |w′
1(t)− w1(t)| ≤ 1 and,

hence,
|s′2(t)− s2(t)| ≤ 1, 0 ≤ t ≤ T. (4.3)

We will need the following assertion which is an immediate consequence of (C3).
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Lemma 4.1. For a server with inflows u(t), u′(t), the service efforts s(t), s′(t), and the respective
outflows w(t), w′(t), the inequalities

|u′(t)− u(t)| ≤ a, |s′(t)− s(t)| ≤ b, 0 ≤ t ≤ T,

imply
|w′(t)− w(t)| ≤ a + 2b, 0 ≤ t ≤ T.

Theorem 4.3. The operator G is Lipschitz continuous with the precise constant 3.

Proof. By (4.3) and Lemma 4.1, we get an upper bound 3 for the Lipschitz constant. The tightness of
this bound is proved by the following piecewise linear example:

u1(t) = u2(t) =
t

2
, t ≥ 0,

u′1(t) =


0 t ≤ 2− e,
2 t−2

ε 2− ε < t ≤ 2,
t
2 + 1, t > 2,

u′2(t) =
{

0 t ≤ 2,
t
2 − 1, t > 2.

Indeed, w3(6) = 3, w′
3(6) = ε/2, and we get the tightness of the bound 3 as ε → 0.

4.5. GPS Servers

Here, again, we get the tight constant 3 for two classes of fluid with equal viscosities and shares. Let us
do it by a Skorokhod problem method. We will also use this method for an alternative proof of the upper
bound 3 for the priority discipline.
The Skorokhod problem for the GPS discipline onR2

+ has the reflection vectors d1 = (−1, 1), d2 = −d1,
and d3 = (1, 1) for the virtual face F = {x : 〈x, d3〉 = 0}, see [6]. In order to find an upper bound for the
Lipschitz constant in some norm ‖ · ‖, one should consider a special set of broken lines {0 = x0, x1, . . . , xk}
from 0 in R2 (not just in R2

+!). This set is defined as follows.
First, let us define three sets

Si = {x ∈ R2 : inf
y∈R2, yi=0

‖x− y‖ ≤ 1}, i = 1, 2,

and
S3 = {x ∈ R2 : inf

y∈R2, y1=y2

‖x− y‖ ≤ 1}.

We will say that the broken line {0 = x0, x1, . . . , xk} is a 1-path of the SP {d1, d2, d3} if, for each
j = 1, . . . k, we have xj ∈ Si and xj − xj−1 ∈ R · di for some i = 1, 2, 3. The supremum of ‖xk‖ for
all 1-paths of the SP is an upper bound for the Lipschitz constant [19, 5]. Actually, the maximal norm of
the endpoint of a 1-path is the maximal possible max-distance between w(·) − s(·) and w′(·) − s′(·) if the
max-distance between u(·)−s(·) and u′(·)−s′(·) does not exceed 1. This is the required Lipschitz constant.
This supremum is equal to 3 for the GPS discipline and themax-norm inR2. Namely, a path {(0, 0), (1, 1),

(3,−1)} is a 1-path of the SP. It is also clear that |x1 + x2| ≤ 2 for the endpoint x = (x1, x2) of any 1-path.
Finally, mini=1,2 |xi| ≤ 1 for such an endpoint and, hence, |xi| ≤ 3, i = 1, 2.
For the priority discipline, the SP has two reflection vectors d1 = (0, 1) and d2 = (1, 1). By similar

argument we conclude that the upper bound for the max-norm is, again, 3.
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5. LIPSCHITZ CONTINUITY OF MULTICLASS SERVER STATIONS

5.1. FIFO Servers

Let us consider a FIFO server with k classes of fluid with equal viscosities. In this case we getL = 2k−1
(this is the precise constant). First, let us demonstrate that L ≥ 2k − 1 by an example.
At the interval [t0, t1] there is no inflow to the first server and, for the second server, u′i(t1) = w′

i(t1) = 1.
Then, at the interval [t1, t2], t2 = t1+k−1, the input to the first server is linear and ui(t2) = 3, i = 2, . . . , k,
u1(t2) = 0. We get, hence, xi(t2) = 2, i = 2, . . . , k. At the second server the input at this interval is also
linear and u′i(t2) = 2, i = 2, . . . , k, and, again, u′1(t2) = u′1(t1) = 1. The queue x′(t2) is empty. Finally,
at [t2, t3], t3 = t2 + 2k − 2, we set u′1(t2 + t) = 1 + t and u1(t2 + t) = t. We get then w1(t3) = 0,
w′

1(t3) = 2k − 1.
Now, let us show that L ≤ 2k − 1. The proof is analogous to that for k = 2. We assume without loss

of generality that w(t3) = u(t2), w′(t3) = u′(t3), t3 > t2, and note that w′(t3) ≤ w(t3) + k and that
w′

i(t3) ≥ wi(t3)− 1 for i = 2, . . . , k. This implies immediately w′
1(t3) ≤ w1(t3) + 2k − 1.

5.2. Priority Disciplines

The Lipschitz constant is, again, L = 2k − 1. In order to prove that, let us denote us(t) = u1(t) +
· · · + uk−1(t) and, analogously, define ws, u′s, and w′

s. The outflow ws is equal to the outflow of a single-
class server with the inflow us, and the same is true for w′

s and u′s. Hence, |ws(t) − w′
s(t)| ≤ k − 1

for each t. This implies the inequality q(t) − q′(t) ≤ k − 1 for each t, where q(t) and q′(t) are the
remaining service efforts for the last class of fluid uk and u′k, respectively. Form Lemma 4.1 we conclude
that |wk(t)−w′

k(t)| ≤ (2k− 2) + 1 = 2k− 1 and the same inequality holds for all indices 1, . . . , k− 1 by
the induction hypothesis.
An example demonstrating that this constant is precise can be easily constructed in the same manner as

for the case k = 2 because of the independence of ws(·) from uk(·).

5.3. Generalized Processor Sharing

Here, again, L = 2k − 1. The inequality L ≤ 2k − 1 is derived from the Lipschitz criterion for the
corresponding Skorokhod problem. Again, as in the case k = 2 considered above, we see that |x1 + · · · +
xk| ≤ k for the endpoint x of any 1-path, and within this domain the 1-path may reach, say, the endpoint
(−1,−1, . . . ,−1, 2k − 1).
Let us construct an example demonstrating that this bound is tight. For simplicity, we will use discontin-

uous inflows, but this example can easily be adapted also to continuous inflows.
At the initial time interval [0, k), we set u(t) ≡ 0 and u′(t) = (t/k, . . . , t/k). Then we set u(k) =

(2k, 2, 2, . . . , 2) and u′(k) = (2k + 1, 1, 1, . . . , 1). Then we stop the inflows and check the outflows
at t = 3k. We get x1(3k) = 2k − 2 and x′1(3k) = 0. Hence, w1(3k) = u1(3k) − x1(3k) = 2 and
w′

1(3k) = 2k + 1, which finishes the proof.

6. MINIMAL LIPSCHITZ CONSTANT

6.1. The Upper Bound

The problem is to find the best possible minimal Lipschitz constant for the class of work-conserving
disciplines on a server with two classes of customers. Clearly, without the work-conserving property, the
best Lipschitz constant is 0 (the server does not work at all).
Let a work-conserving discipline at the two servers be the same. The initial inflow u(t1) to the first server

will be (1, 1); t1 is assumed large enough, so the queue is empty at time t1. There is no inflow to the second
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server up to t1. Then there is a fast linear inflow to the second server: u′(t1 + ε) = (2+ ε, 2+ ε). The inflow
to the first server is also linear at [t1, t1 + ε]: u(t1 + ε) = (1 + ε, 1 + ε).
Let us look at the situation at time t2 = t1 + ε +2. Either for i = 1 or for i = 2, we have w′

i(t2) ≤ 1+ ε.
Let, for definiteness, i = 1. Then we choose a linear inflow to the first server at [t1 + ε, t2] such that
u(t2) = (3 + ε, 1 + ε) and note that w1(t2) = 3 + ε. We also have ‖u(·) − u′(·)‖[0,t2] = 1 and, hence,
L ≥ w1(t2)− w′

1(t2) ≥ 2.

6.2. The Equalizing Discipline

Lemma 6.1. The constant 2 is attained at a server with the equalizing discipline, that is, the discipline
that gives priority to the class with the maximal length of queue.

Proof. Suppose that
w′

1(t) = w1(t) + 2 + ε (6.1)

for some ε > 0, and demonstrate that the difference w′
1 − w1 cannot increase further. Suppose the contrary,

that is, in any right-hand neighborhood of t there exists a t′ such that w′
1(t

′) > w1(t′)+2+ ε. Then we have
x′1(t) ≥ x′2(t) (otherwise w′

1 does not increase in some right-hand neighborhood of t) and x1(t) ≤ x2(t)
(otherwise w1 is growing at maximal possible rate in some right-hand neighborhood of t and w′

1 cannot
grow faster than that). Hence

x′1(t)− x1(t) ≥ x′2(t)− x2(t).

Moreover, we have
w′

1(t) = u′1(t)− x′1(t) = u1(t)− x1(t) + 2 + ε,

which gives us the inequality

u′1(t)− u1(t) ≥ x′2(t)− x2(t) + 2 + ε = u′2(t)− u2(t)− (w′
2(t)− w2(t)) + 2 + ε,

and, hence,
w′

2(t)− w2(t) ≥ ε. (6.2)

Finally, summing up (6.1) and (6.2) we get w′(t)− w(t) > 2 which is a contradiction with the contraction
property of the single-class server input-output operator.
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