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Abstract—This work deals with time–dependent analysis of a random process associated with the
number of jobs and of their spent service times in the M/G/1 queueing system under the foreground–
background (FBPS) processor sharing discipline. This discipline assumes that only the set of jobs with
the least amount of attained service share the server in the pure processor sharing fashion. We derive the
time–dependent distribution of the number of jobs each of which has an attained service time a ≤ y at
time t in terms of the double transforms (with respect to space: the Laplace functional, and with respect
to time: the Laplace transform) given the system is empty at time t = 0. In other words, it is obtained the
non–stationary distribution of the random counting measure representing the transient state of the FBPS
queue in all details. The method of the analysis is an extension and refinement of the principally new
approach introduced and developed in the previous authors works (see, for example, [11]). We consider
also some important special cases.

1. INTRODUCTION

The study of processor sharing queues is of considerable interest in modern queueing theory in connection
with the mathematical modeling of the WEB servers in the INTERNET, time–sharing computer systems,
asynchronous transfer mode in ISDN schemes, etc. During the last three decades considerable attention has
been paid to the analysis of various processor sharing queueing models (the idea of processor sharing is
originally due to Kleinrock (1967), an account of some important results can be found in Kleinrok [1, Ch. 4],
and Yashkov [2]). One of the basic models is the M/G/1 queue with the foreground–background processor
sharing (FBPS) discipline introduced also by Schrage [3]. This model has been studied by Kleinrock [1],
Schassberger [4], and Yashkov [5], [6], among others (see also [2], [7] and references herein), but all of
these previous investigations have dealt with stationary (ergodic) behaviour. (The steady–state sojourn time
distribution have been known from the works [1] and [5], see Theorem 1 in Appendix.) An exception is
provided only since 1988 when Yashkov [8] has obtained explicit analytical expressions for the Laplace
transform (LT) of the generating function for the number of jobs at time t for the M/G/1—FBPS model by
means of a non–trivial generalization of his previous solution for stationary queue–length distribution [6], [9].
Related transient solution for the M/G/1 queue with egalitarian processor sharing (EPS) can be found in
Yashkov [2] (and in the references therein, also since 1988). Recent progress in this area is reflected in [10].
A modification of the derivation of the time–dependent queue–length distribution for the M/G/1—FBPS
model is given in [11], the contribution of which is an improved proof with details under some relaxing the
previous assumptions from [8], [12], [13].
The main purpose of this paper is to extend our result from [11] to the case where we no longer require

to study only characteristics of the total number of jobs at time t as in [11] but instead we consider the
number of jobs at time t, each of which has an attained service time a ≤ y. Then the state of the FBPS
1 The research of S.F.Y. was partially supported by Grant no. Sci.Sch.–934.2003 (Head R.A.Minlos).
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system can be viewed as a random counting measure (point process) which is characterized by its Laplace
functional. In other words, we obtain the generalization of the same kind as it was made by Schassberger [4]
who considered only the stationary distribution of such random counting measure and showed that the
corresponding Laplace functional has the representation related to the generating function for the steady–
state number of jobs in [6], [9], [12]. We derive the non–stationary distribution of the random counting
measure for the M/G/1—FBPS model (announced partially in [13]) representing the transient state of the
queue in all details. To do this, it is exploited the new method of analysis from [6], [8] (the method is
completely different from Schassberger’s one). Besides, we do not require that
(i) the distribution of the service times has a density,
(ii) the offered load is less than 1.
The rest of the paper is organized as follows. In §2 we describe the FBPS model, give a background to the

analysis and prove the main theorem 2.1. In §3 our interest will focus on an extension of the main theorem
to all half–axis and on some important corollaries. Some of them are obtained by means of the combination
with theorems from Appendix. The final section contains few closing remarks.

2. STUDY OF RANDOM PROCESSES IN THE M/G/1—FBPS QUEUE

2.1. Model description and notations

A description of the FBPS discipline is as follows: a job with attained service (the age) a does not receive
service unless there are no jobs in the system with the age less than a. The single processor simultaneously
serves those and only those with the least age, but each at a rate 1

n if the number of the youngest jobs is
n, 1 ≤ n < ∞. Thus a job (or a set of jobs) with the least amount of attained service (e.g., a new arrival)
has the highest preemptive–resume priority which decreases in accordance with an increment of its age.
Jumps in the service rate occur at the epochs of arrivals, departures and when the age of the jobs which share
processor reaches to the age of some interrupted jobs.
We consider the M/G/1 queue where the jobs arrive according to a Poisson process with rate λ. The

service discipline is the FBPS described above. The job’s lengths, i.e., the service requirements are i.i.d.
random variables with a general distribution B(x) (B(0+) = 0, B(∞) = 1) the first moment of which is
β1 < ∞. Let β(s) be the LST of B(x), i.e., β(s) =

∫∞
0 exp(−sx)dB(x). The number of jobs at time t in

the system will be denoted as L(t), the non–Markovian process {L(t) : t ∈ [0,∞)} is defined on a suitably
chosen (as in [6]) probability space. The offered load will be denoted as ρ = λβ1. We assume that the system
is empty at time t = 0, although it is not difficult to extend our results to the case of various initial conditions.
Let L(t, y) denote the number of jobs each of which has an attained (spent) service time a ≤ y at

time t. Then L(t) ≡ L(t,∞). The process
{
L(t, y) : t ≥ 0, y ∈ R+

}
can be also viewed as a random

counting measure or point process [14, p.179], [15, Ch.5], [16] on the Borel sets of [0,∞). For each fixed
t, {L(t, ·)} have a discrete (atomic) distribution on [0,∞) herein the epochs of jumps correspond to the
age of the groups of jobs (with the same spent service) and the values of jumps correspond to the numbers
of jobs in the groups. We shall at first consider the process {L(t, y)} during the first busy period. Let
ζ = inf(t > 0 : L(t,∞) = 0). The indicator function of an event (·) is denoted as 1(·) .

Definition 2.1. The function

L1(f, t) .= E

[
exp

(
−

∫ ∞

0
f(y)L(t, dy)

)
1(ζ>t) |L(0,∞) = 1

]
(2.1)

is the Laplace functional of the process {L(t, y) : t ≤ ζ, y ∈ R+} over the first busy period given it is
started by one job. Here f is any nonnegative measurable function on [0,∞). For brevity, we shall often omit
the condition in the right–hand side (RHS) of formulae like (2.1) since it is also indicated by the subscript
in the left–hand side.
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The Laplace transform (with respect to t) of L1(f, t) is given as

L̃1(f, s) .=
∫ ∞

0
exp(−st)L1(f, t) dt, Re s > 0. (2.2)

One of our main goals is to obtain L̃1(f, s). This problem is solved in §2.3.

2.2. Outline of the method

In this subsection we give an outline of the method and the main ideas behind it. This forms a background
to the analysis of the FBPS model. Let us consider the process {L(t, y) : t ≥ 0, y ∈ R+} stopped at time ζ,
i.e., L(t,∞) = 0 for t ≥ ζ. Introduce the process {X(t)} by

X(t) =
{

inf(y ≥ 0 : L(t,∞)− L(t, y) = 0) if t < ζ
X(ζ−) if t ≥ ζ.

This process describes the maximal age over all jobs present at time t and it takes the value of the age for
a job that has the lowest priority at time t in the first busy period (because of the FBPS rule, such job may
be not single at some t). More formally, this cumulative process is introduced in [6],[17] as a continuous
additive functional of a Markov process that describes the dynamics of {L(t, ·)} together with additional
coordinates which record the age of each job. ‘An inverse’ process to {X(t)} is defined by

τ(x) = inf(t > 0 : X(t) > x). (2.3)

We use convention that inf ∅ = +∞. Then τ(x) is right–continuous. Because of the FBPS discipline, the
sample paths of {X(t)} are continuous and non–decreasing functions. In view of this, the process {τ(x)} is
right–continuous and strictly increasing. We note that τ(x) is finite for each finite x. Define now

M(x) = L(τ(x),∞). (2.4)

Put also M(x) = 0 if τ(x) = ∞. The new process {M(x)} is obtained from {L(t,∞)} (together
with its additional coordinates) by means of a random time change determined by (2.3). In other words,
each realization of the process {L(t, ·)} is endowed with its own clock, running individually with variable
speed. The features of {M(x)} and {τ(x)} are considered in [6], [17, Ch. 3] in the context of random
processes in queues. In particular, it is known that, for each x, τ(x) is a stopping time,X(τ(x)) = x, and the
time–changed process {M(x)} has the strong Markov property. Moreover, {M(x)} is a nonhomogeneous
Markov jump process. (Thus, by a random time change we simply understand an increasing net {τ(x)} of
stopping times.)
In the queueing context, the transformation (2.4) means that we eliminate subbusy periods in which the

jobs with the age a < x are served, and, besides, we telescope the time scale, i.e., the time intervals during
which the processor serves the jobs with the maximal age are compressed by a factor of n when the number
of such jobs is equal to n. When the time scale is changed this way, the service rate is no longer a function
depending on the number of jobs and their ages, but it is constant and equal to unit. However, the rate of the
input process, when viewed through the new time scale, is the random process {λM(x) : x > 0}. For each
x < ∞, τ(x) can be considered as an epoch (in old time scale) when the attained service of the lowest
priority group of jobs reaches to x.

Remark 2.1. For each fixed x, the random variable τ(x) ∧ ζ may be interpreted as the duration of some
(sub)busy period during which the processor serves the jobs of the length u ≤ x completely, i.e., until they
leave the system, and until the attained service of longer jobs (with the lengths u > x) reaches to the maximal
attained service time x. For brevity, such busy period will be called an x–busy period.
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We already saw that the process {M(x) : x > 0} takes the values of the number of jobs with the maximal
age x in the first busy period at the epochs {τ(x)}. In virtue of this and Remark 2.1, we have

Remark 2.2. For each fixed x > 0, M(x) : x > 0 is related to, but not equal to, the number of jobs
served during an x–busy period.

The above arguments enable us to reduce an investigation of complex queueing processes in the FBPS
system to that of more simple and analytically tractable processes.

Remark 2.3. The idea of using the inverse of additive functional as a random time change in the process
{L(t, ·)} has a long history. It is hardly an uncommon one in probability theory. In context of the general
theory of Markov processes, the random time change was first proposed by Volkonsky already in 1958 [18]
and later was developed by many authors (see, e.g., the survey by Syski [19] or [20, Ch. 5]). In the queueing
context, the idea of such sort was seemingly first developed in [6], [12] (see also [17, Chs. 2, 3]).

2.3. Distribution of point process on the first busy period

The main result of this paper is given in the following theorem. Its proof does not require smoothness
assumptions on B(·).

Theorem 2.1. The exact solution for L̃1(f, s) is

L̃1(f, s) = λ−1

[
exp

(
λ

∫ ∞

0

(
z
∂Q(z, s, y)

∂z

)∣∣∣∣
z=e−f(y)

dy

)
− 1

]
, (2.5)

where function Q is, for 0 ≤ z ≤ 1, Re s > 0 and x ≥ 0, the unique solution of the functional equation

Q(z, s, x) = β(s + λ− λQ(z, s, x);x) + z(1−B(x)) exp(−x(s + λ− λQ(z, s, x))). (2.6)

Here β(s;x) =
∫ x
0− exp(−su) dB(u).

Proof. Step 1. In virtue of the Fubini theorem, (2.2) is rewritten as

L̃1(f, s) = E

[∫ ζ

0
exp(−st− I(f, t)) dt

]
,

where I(f, t) =
∫∞
0 f(y)L(t, dy). Because τ(x) is a stopping time, we can introduce the following function

L̃1(f, s, x) = E

[∫ τ(x)∧ζ

0
exp(−st− I(f, t)) dt

]
. (2.7)

Note that the monotonous convergence yields

L̃1(f, s) = lim
x→∞

L̃1(f, s, x). (2.8)

The equation for L̃1(f, s, x) can be constructed by the following way. Suppose that∆ is infinitesimal, then

L̃1(f, s, x + ∆) = L̃1(f, s, x) + E

[∫ τ(x+∆)

τ(x)
exp(−st− I(f, t))1(ζ>τ(x)) dt

]
. (2.9)

The last term in the RHS of (2.9) can be represented by the law of total probability as

E

[∫ τ(x+∆)

τ(x)
exp(−st− I(f, t))1(ζ>τ(x)) dt

]
=

∞∑
n=1

qn(x)Gn(f, s, x,∆), (2.10)
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where qn(x) .= P(L(τ(x),∞) = n) and

Gn(f, s, x,∆) .= E

[∫ τ(x+∆)

τ(x)
exp(−st− I(f, t)) dt |L(τ(x),∞) = n

]
. (2.11)

Step 2. The proof proceeds via preliminary lemma.

Lemma 2.1.

Gn(f, s, x,∆) = n∆E
[
e−sτ(x)−f(x)M(x) |M(x) = n

]
+ λ∆nE

[
e−sτ(x)−f(x)M(x)L̃1(f, s, x) |M(x) = n

]
+ on(∆), (2.12)

whereM(x) is given by (2.4).

Proof. In view of our arguments from §2.2, the variable τ(x + ∆) is composed of τ(x) + n∆ and,
possibly, of an x–busy period which is started by a new arrival in the segment [τ(x), τ(x) + n∆]. The first
term in the RHS of (2.12) is the result of approximation of the integral in (2.11) over [τ(x), τ(x)+n∆]. The
second term takes into account the possible interruption (i.e., an x–busy period) that occurs with probability
λn∆. We denote the number of jobs over this x–busy period as L̄(t, ·). Because of the FBPS discipline,
the process

{
L̄(t, ·)

}
is an independent probabilistic copy of {L(t, ·)} (the time is counted here from the

start of the new x–busy period). Let τ̄(x) and ζ̄ be defined for
{
L̄(t, ·)

}
as τ(x) and ζ, respectively, are

defined for {L(t, ·)} (see (2.3) and §2.1). Then, by Lebesgue’s theorem for measure decomposition [14], the
distribution of {L(t, ·)} in [τ(x), τ(x) + τ̄(x)∧ ζ̄) is the sum of the distribution of

{
L̄(t− τ(x), ·)

}
and of

a distribution that has single jumpM(x) at point x. Hence∫ τ(x)+τ̄(x)∧ζ̄

τ(x)
e−st−I(f,t) dt = e−sτ(x)−f(x)M(x)

∫ τ̄(x)∧ζ̄

0
e−st−Ī(f,t) dt,

where Ī(f, t) =
∫∞
0 f(y)L̄(t, dy). This leads to the conditional expectation in the second term of the RHS

of (2.12) in view of (2.7) and stochastic equivalence of
{
L̄(t, ·)

}
and {L(t, ·)}. ut

If we now define
Q(z, s, x) .= E[e−sτ(x)zM(x)], (Re s > 0, |z| ≤ 1), (2.13)

then we obtain from (2.9), (2.10) and Lemma 2.1 the equation

∂L̃1(f, s, x)
∂x

=
(

z
∂Q(z, s, x)

∂z

)∣∣∣∣
z=e−f(x)

[1 + λL̃1(f, s, x)] (2.14)

by taking the limit as ∆ → 0. We ought to take into account thatM(x)Q(z, s, x) = z(∂Q(z, s, x)/∂z) by
virtue of (2.13). The initial condition is L̃1(f, s, 0) = 0. The solution of (2.14) is

L̃1(f, s, x) = λ−1

[
exp

(
λ

∫ x

0

(
z
∂Q(z, s, y)

∂z

)∣∣∣∣
z=e−f(y)

dy

)
− 1

]
,

from which it follows the assertion (2.5) in view of (2.8). ut

Step 3. The last step is to show that the assertion (2.6) holds. For fixed x, x > 0, let

H(u;x) =
{

B(u) if u < x
1 otherwise,

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 4 № 2 2004



180 YASHKOV, YASHKOVA

then the LST of such truncated distribution is

h(s;x) =
∫ x

0
e−su dB(u) + e−sx(1−B(x)). (2.15)

Note that H(u;x) is the distribution of the random variable B ∧ x. We denote the number of jobs served
during x–busy period by N(x) and define the function

F (z, s, x) .= E
[
e−sτ(x)zN(x)

]
, (Re s > 0, |z| ≤ 1).

Taking into account Remark 2.1, we obtain that, if H(u;x) is used instead of B(u), F (z, s, x) is found as
the unique solution of the following functional equation for an M/G/1 queue

F (z, s, x) = zh(s + λ− λF (z, s, x);x), (2.16)

where x is viewed as a parameter. (For x = ∞ this equation gives the transform of joint distribution of the
duration of the standard busy period and the number of jobs served during the busy period; it is the so–called
Takacs equation [21, §1.3]. See also [22, p. 500] for an explicit expression of such joint distribution, but it is
not in closed form.) Let u be the length of the job that initiates x–busy period. Taking into account Remark
2.2, we can see that

M(x) =
{

N(x)− 1 if u < x
N(x) if u ≥ x,

then this and (2.16) lead to assertion (2.6) in view of (2.13) and (2.15).
ut

Remark 2.4 contains an additional comment to the step 3 of the proof of Th. 2.1.

Remark 2.4. In the new time scale x, the input process to the FBPS queue can be considered as the sum
of a random number M(x) of independent Poisson processes, each of rate λ. The process of such kind is
closely related to a branching process in which the offsprings of a single ancestor are generated with rate
λ, and they have the life lengths distributed as B(·). So, the process {M(x)} coincides in distribution with
such branching process of the number of particles, and τ(x) ∧ ζ coincides in distribution with the sum of
life lengths of all particles which fell on [0, x]. Thus, Q(z, s, x) represents the joint distribution (in terms of
double transform) of the number of particles and of their total age in the process with a single ancestor. The
equation (2.6) can be interpreted as the decomposition of Q by the law of total probability for two events:
the life length of the ancestor has expired at time u ≤ x (the first term of the RHS of (2.6)), and the ancestor
is alive at time x with probability 1−B(x) (the second term).

Remark 2.5. We can also construct partial–differential equation for {M(x)}, the solution of which is
given by (2.6). Such less convenient approach is used in [6], [8], [9] for special case s = 0.

Remark 2.6. The special case of (2.6) for x → ∞ and z = 1 gives the equation for the (standard) busy
period distribution in terms of the LST π(s) .= E

[
e−sζ

]
π(s) = β(s + λ− λπ(s)). (2.17)

It follows from [21, §1.3, Ths. 3, 4] that, when ρ > 1, (2.17) has two solutions as s = 0: π1(0) = 1 and
π2(0) = π(0) < 1 (we ought to choose the minimal one). As s > 0, (2.17) has unique solution π(s), herein
π(s) → π(0) as s → 0, henceΠ, the busy period, is equal to infinity with probability 1−π(0). When ρ ≤ 1,
(2.17) has unique solution 0 < π(s) ≤ 1 for each s ≥ 0 and π(s) → 1 as s → 0, herein E[Π] = ∞ if ρ = 1
(when ρ < 1, π(0) = 1 and E[Π] < ∞). Using argument of such kind, it is not very difficult to obtain the
solution of (2.6) for any ρ. We do not requireQ(1, 0,∞) = 1, so Theorem 2.1 holds not only for the stability
condition ρ < 1 but even for ρ ≥ 1.

Remark 2.7. A counterpart of Theorem 2.1 for the M/G/1—EPS queue can be obtained from the results
of [17, §2.8] by similar extension; its representation resembles the formula (2.48) in [2].
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3. POINT PROCESS ON ALL HALF–AXIS. SOME CONSEQUENCES

The well–known arguments from renewal theory allow us to connect (2.5) with the distribution of
the process {L(t, y) : t ≥ 0, y ∈ [0,∞)} on all half–axis. To this end, we ought to consider two renewal
processes formed by points when the consecutive busy periods are initiated and finished, respectively. Let
the whole FBPS system started initially empty.

Definition 3.1.

L0(f, t) .= E

[
exp

(
−

∫ ∞

0
f(y)L(t, dy)

)
|L(0,∞) = 0

]
,

L̃0(f, s) =
∫ ∞

0
exp(−st)L0(f, t) dt. (3.1)

Theorem 3.1. The exact solution for L̃0(f, s) is

L̃0(f, s) = [s + λ− λπ(s)]−1[1 + λL̃1(f, s)],

where π(s) is given by (2.17).

Proof. Similarly to the derivations of (3.13) or (2.107) from [23, Ch.1] or [17], respectively. We omit
the details. ut

Remark 3.1. Theorem 3.1 holds for an M/G/1 queue under any work–conserving discipline with the
initial condition P(L(0, ·) = 0) = 1. The discipline determines the form of function L̃1(f, s). It is not very
difficult to extend the result to the case P(L(0, ·) = n) = 1.

Our solution can be also generalized to the case of bulk arrivals. It will be changed only the initial condition
and the offered load ρ. (It is done similarly to the study of stationary M/G/1—FBPS queue with bulk
arrivals [6].)
We proceed to corollaries from Theorems 2.1 and 3.1.

Corollary 3.1. For ρ < 1, the Laplace functional for the stationary process {L(t, y)} is

L(f) = (1− ρ) exp
(

λ

∫ ∞

0

(
z
∂Q(z, 0, y)

∂z

∣∣∣∣
z=e−f(y)

dy

))
,

where the function Q is given by (2.6) for the special case s = 0.

Proof. Since the stationary distribution exists by Smith’s ergodic theorem, thenwe obtain fromTheorems
2.1 and 3.1 by using Abelian theorem for Laplace transforms

L(f) = limt→∞L̃0(f, s) = lims↓0 sL̃0(f, s),

and the result follows after routine algebra taking into account that

lims↓0 s(s + λ− λπ(s))−1 = 1− ρ

by virtue of L’Hospitale’s rule. ut

Remark 3.2. This stationary solution was obtained by Schassberger [4] who used another method — via
a discrete time approximation of the FBPS model.
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Function f can have, for example, the form f(x) =
∑k

i=1 ci1x∈[ai,bi] where the ci < ∞ are real and [ai, bi]
are segments on time axis (f(x) is a simple function in this case). If f(x) = c = const, then we let z = e−c.
For this special case, Theorems 2.1 and 3.1 give us the distribution of the number of jobs at time t [2, Th.
4.5 and (2.50)], [8, p. 43, 46], [11, Th. 2], [13].

Corollary 3.2. For f(x) = c = const, let z = e−c, |z| ≤ 1 then L̃0(z, s) and L̃1(z, s) are the LT’s
of the generating functions for the number of jobs at time t on all half–axis and on the first busy period,
respectively. It holds

L̃0(z, s) = [s + λ− λπ(s)]−1[1 + λL̃1(z, s)],

L̃1(z, s) = λ−1

[
exp

(
λz

∫ ∞

0

∂Q(z, s, y)
∂z

dy

)
− 1

]
.

Proof. Straight arithmetic. ut

Remark 3.3. This non–stationary solution was first obtained in [8] (see also [13]) under the assumption
that B(x) has a density; an improved proof with details and without the smoothness assumption on B(·) is
contained in [11].

For comparison with the last corollary, we summarize few main solutions for L̃1(z, s) for the FCFS and the
EPS disciplines, which are available at present (the queue is empty at time t = 0).

Theorem 3.2. For the M/G/1—FCFS queue,

L̃1(z, s) =
1− β(s + λ− λz)

s + λ− λz

z − π(s)
1− z−1β(s + λ− λz)

.

Proof. This is old result, see [23, Ch.1, (2.19)]. ut

Theorem 3.3. For the M/G/1—EPS queue,

L̃1(z, s) =
z(1− π(s))

s + λ(1− z)(1− π(s))
.

Proof. See Theorem 2.7 in [17] or Theorem 2.17 in [2]. ut

Remark 3.4. Remark 2.6 remains in force for Theorem 3.3.

Some further consequences of Theorems 2.1 and 3.1 are following.

Corollary 3.3. For ρ < 1, the generating function of the stationary queue–length distribution of the
M/G/1—FBPS system is

E[zL] = (1− ρ) exp
(

λz

∫ ∞

0

∂Q(z, 0, u)
∂z

du

)
,

where function Q is given by (2.6) for the special case s = 0.

Proof. Similarly to the proof of Corollary 3.1, taking into account that f(x) = c = const and z =
exp(−c). ut
This corollary makes it possible to compute first nmoments ofL. The first two moments which are found

in [6] are:

E[L] = λ

∫ ∞

0
m2(x) dx, (3.2)
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Var[L] = λ

∫ ∞

0
m3(x) dx. (3.3)

In (3.2) and (3.3),m2(x) andm3(x) are given by the formulas

m2(x) = (1− ρ(x))−1λ2m2
1(x)h2(x) + 2λxm2

1(x) + m1(x), (3.4)

m3(x) = (1− ρ(x))−1[λ3m3
1(x)h3(x) + 3λ2m1(x)(m2(x)−m1(x))h2(x)]

+ 3λ2x2m3
1(x) + 3λx(m2(x)−m1(x))m1(x) + 3m2(x)− 2m1(x).

(3.5)

Herem1(x) = (1−B(x))/(1− ρ(x)), ρ(x) = λh1(x), where h1(x) is given by formula

hj(x) = j

∫ x

0
yj−1(1−B(y)) dy, j = 1, 2, . . . . (3.6)

It is the jth moment of (2.15). We note that λ
∫∞
0 m1(x) dx = − ln(1− ρ).

Corollary 3.4. Let P00(t)
.= P(L(t) = 0|L(0) = 0). This probability has the LT w.r.t t

p00(s) = [s + λ− λπ(s)]−1.

Proof. Immediately from Corollary 3.2, setting z = 0. ut
Let Tc be the relaxation time of the M/G/1—FBPS system. This quantity determines the rate of conver-

gence to the steady–state. The relaxation time of a queue is usually defined to be the inverse of the exponent
which dominates the asymptotic behaviour in the long run of the queueing characteristics, e.g., of P00(t).

Corollary 3.5. Let B(x) has a light tail (i.e., β(−s) < ∞, s > 0) and sb < 0 be the abscissa of
convergence of β(s). Suppose also that β(s) ↑ ∞ as s ↓ sb. Then Tc = −s−1

0 , where s0 is the singularity
with the largest real part of p00(s) determined by Corollary 3.4 (apart from a pole at s = 0).

Proof. Similarly to the comments for Theorem 2.19 in [2, p.120]. The first proof is due to Blanc and van
Doorn [24]. ut

Remark 3.5. Corollaries 3.4 and 3.5 remain in force for an M/G/1 system under any work–conserving
discipline with the initial condition P(L(0) = 0) = 1.

Remark 3.6. Significance of Theorems 2.1, 3.1, 3.3 grows in the light of the following facts.
(i) The discipline FBPS stochastically minimizes L(t) for each t in the classes DFR (decreasing failure

rate) and IMRL (increasing mean residual life) distributions of B(x) in the work–conserving GI/G/1 queue
when the remaining lengths of jobs are unknown [5], [25] (see Appendix for the corresponding theorems).
For example, B(x) ∈ DFR if and only if log(1 − B(x)) is convex. The FBPS coincides with the optimal
strategy (policy) in such cases [25, Th.1].
(ii) The distributions of job lengths (for the current INTERNET state) belong, as a rule, to the heavy–tailed

distributions (β(−s) = ∞, s > 0) which studied earlier in insurance mathematics [15]. The typical example
of an acceptable approximation for the file size is a family of the Pareto distributions.
(iii) The (standard) Pareto distribution has linearly decreasing failure rate.

Corollary 3.6. If B(x) ∈ DFR or IFR (see Appendix), then (3.2) reduces to

E[L] =
∫ ∞

0
(1− ρ(u))

∫ ρ

ρ(u)

µ(x)
(1− ρ(x))2

dρ(x)du,

where µ(x) is given in Definition 1 in Appendix.
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Theorem 3.4. If B(x) ∈ DFR with monotone µ(x), then it holds for the queue GI/G/1 under the FBPS

P(L(t)FBPS = k) ≤ P(LFCFS(t) = k) w.p.1,

where P(LFCFS(t) = k) are the time–dependent state probabilities of the queue GI/M/1 with FCFS.

Proof. Apply Theorem 3 from Appendix with trivial manipulations. ut

Corollary 3.7. It holds the following estimate for the steady–state M/G/1—FBPS in the case B(x) ∈
DFR

P(LFBPS ≥ k) ≤ ρk, k = 1, 2, . . .

This corollary can be also deduced from Corollary 3.3. However using Theorem 3.4 above or Theorem 2
from Appendix gives us the result almost immediately, taking into account the generating function of the
number in the M/M/1—FCFS: E[zL] = (1 − ρ)/(1 − ρz). In view of our exact result (see Corollary 3.3),
we shall not obtain the sharper bounds.

Example. This is only small part of the set of the examples from [17], data below are also contained in [6].
Consider the queue M/G/1 in the stedy–state with λ = 0.8. For the 2-stage hyperexponential distribution
(of type H2 ∈ DFR) B(x) = 0.6(1 − e−3x) + 0.4(1 − e−0.5x) with the moments β1 = 1, β2 = 3.33,
β3 = 19.33, we have thatE[L]FBPS = 3.57,E[L]EPS = 4.00,E[L]FCFS = 6.13 andVar[L]FBPS = 14.98,
Var[L]EPS = 20.00, Var[L]FCFS = 52.45. The results have been calculated from (3.2 and (3.3) for the
FBPS case (the other results have been obtained from the well–known formulas). For the 2-stage Erlang
distribution (of type E2 ∈ IFR) B(x) = 1 − e−2x − 2xe−2x with the moments β1 = 1, β2 = 1.5,
β3 = 3, we have that E[L]FBPS = 4.43, E[L]EPS = 4.00, E[L]FCFS = 3.20 and Var[L]FBPS = 26.08,
Var[L]EPS = 20.00, Var[L]FCFS = 11.80. These data illustrate some properties of the FBPS discipline.

CONCLUSION

Our theorems and their corollaries provide new powerful tools for the deep study of time–dependent
performance measures of the M/G/1—FBPS queue (and the M/G/1—EPS queue, too). These results open
also the ways for investigation of the transient (ρ > 1) and null–recurrent (ρ = 1) behaviour of these basic
models for predicting delays in the WEB servers. To efficiently apply the results, it can be also useful using
the asymptotic methods of analysis (as in [26], [27]), developed only for stationary performance measures,
or the methods of numerical inverting the Laplace transforms (for example, as in [28]).

APPENDIX

Here we briefly describe some basic results for the M/G/1—FBPS queue published in the papers [5], [25],
which are difficult to access for English–language readers. Arrivals occur according to Poisson process with
rate λ, the distribution of the job’s lengthsB(x) (B(0+) = 0) has the LST β(s), β1 =

∫∞
0 (1−B(x)) dx <

∞, ρ = λβ1. Let V (u) be the stationary sojourn time for a tagged job which has a length u at the arrival
time and v(s, u) = E[e−sV (u)].

Theorem 1. (Yashkov [5], 1978). If ρ < 1 and B(x) is absolutely continuous, then

v(s, u) = w(s + λ− λπ(s, u), u)e−u(s+λ−λπ(s,u)),

where
w(s, u) =

s(1− ρ(u))
s− λ + λh(s, u)

,

ρ(u) = λh1(u), π(s, u) = h(s + λ − λπ(s, u), u). Here h(s, u) and hj(u) are given by (2.15) and (3.6),
respectively.
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Comments to the proof. The proof in [5] uses the method of delay cycle analysis with additional con-
siderations of main properties of the backlog process Ux(t) (a unfinished work, truncated on level x) in
work–conserving systems. ut

Corollary 1. (Yashkov [5], 1978).

v1(u) = E[V (u)] =
λh2(u)

2(1− ρ(u))2
+

u

1− ρ(u)
,

Var[V (u)] =
λh3(u)

3(1− ρ(u))3
+

λuh2(u)
(1− ρ(u))3

+
3(λh2(u))2

4(1− ρ(u))4
,

E[V ] =
∫ ∞

0
v1(u) dB(u) =

∫ ∞

0
(1−B(x)) dv1(x). (A.1)

Remark 1. (Yashkov [5], 1978). It follows from (A.1) and Little’s formula that

E[L] = λ

∫ ∞

0

[
λ

∫ x
0 u(1−B(u)) du

(1− ρ(x))2
+

x

1− ρ(x)

]
dB(x). (A.2)

Eqs. (A.2) and (3.2) are equivalent.

Definition 1. Let B(x) be absolutely continuous and µ(x) = dB(x)/(1−B(x)). If µ(x) is decreasing
(increasing) in x, then B(x) ∈ DFR (IFR) distribution.

Theorem 2. (Yashkov [5], 1978). If B(x) ∈ DFR (IFR) with monotone µ(x), then E[L] and E[V ] in the
M/G/1—FBPS queue is minimal (maximal) over all possible work–conserving disciplines that do not take
advantage of precise knowledge about the lengths of jobs.

Comments to the proof. The main idea is to associate with each job the priority index

J(a) = sup
x≥a

∫ x
a dB(u)∫ x

a (1−B(u))du
, (A.3)

which is obtained from a discrete–time version of the model. Then the optimal order of service (which
minimizes E[L] and E[V ]) is provided by giving the preemptive–resume priority to the jobs with maximum
J(a). If there n > 0 jobs with the same maximal J(a), then such jobs must be serviced simultaneously with
the rate 1/n. It is a simple consequence to applying the representation of B(x) in the form

B(x) = 1− e−
∫ x
0 µ(u)du.

When µ(a) is decreases (increases) monotone on a, then (A.3) set up the FBPS (FCFS) discipline. If
µ(a) = const, then E[L] coincides with the same performance measure for the queue M/M/1 with any
work–conserving discipline which does not use information about remaining lengths of jobs (e.g., the
FCFS). ut

Definition 2. If (1 − B(t))−1
∫∞
t (1 − B(y))dy is increasing (decreasing) in t, then B(x) ∈ IMRL

(DMFL) distribution.

Theorem 3. (Yashkov [25], 1991). The FBPS (FCFS) stochastically minimizes (maximizes) L(t) at each
t in the class of IMRL (DMRL) distributions of B(x) among all work–conserving disciplines in the system
GI/G/1, that do not take advantage of precise knowledge about the lengths of jobs.
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Comments to the proof. It is used path by path analysis of the FBPS queue via some stochastic differetial
equation, taking into account that:
(i) the FBPS minimizes truncated unfinished work Ux(t) in the case of IMRL distribution of B(x) (it is

some by–product in the proof of Theorem 1),
(ii) definition 2,
(iii) formal integration by parts,
(iv) interchanging the orders of taking the limit and of taking expectation in the corresponding stochastic

integrals. ut
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