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A NOTE ON A HEAVY TRAFFIC LIMIT THEOREM
FOR THE M/D/1—FBPS QUEUE1

S.F.Yashkov∗, A.S.Yashkova∗∗
∗Institute for Information Transmission Problems, 19, Bolshoi Karetny lane,

101447 Moscow GSP–4, Russia. E-mail: yashkov@iitp.ru
∗∗Municipal Institute of Zhukovsky, Chair Appl. Informatics in Economics,

15, Mayakovsky Street, 140180 Zhukovsky, Moscow region, Russia.
Received May 31, 2004

Abstract—In this short article we give a simple proof of the heavy traffic limit theorem for the sojourn
time distribution, suitably scaled, in the M/D/1 queueing system under the foreground–background
processor sharing (FBPS) discipline. The FBPS discipline gives the preemptive–resume priority in
service to those jobs that have received the least amount of service so far. This theorem was announced
without the proof in [5, Th. 6.7].

1. INTRODUCTION

We consider theM/D/1 queue with the foreground–background processor sharing (FBPS) discipline. This
discipline gives the preemptive–resume priority in service to those jobs that have received the least amount
of service time. If there are 1 ≤ n < ∞ such jobs, then they are served simultaneously at rate 1/n. The
problem of the determination of the steady–state sojourn time distribution for the M/G/1—FBPS queue has
been solved independently by Kleinrock [1] and Yashkov [2], [3] (see [4, Appendix, Th. 1]). They assumed
that the distribution function of the service requirements (better: the lengths of jobs) B(x) is absolutely
continuous. Because of a weak continuity argument, their results hold for the case whenB(x) has no density,
in particular, for the M/D/1—FBPS. The purpose of this short article is to find the limiting distribution of
the steady–state sojourn time in this system, suitably scaled, when the offered load tends to one. We present
a simple analytical proof of such heavy–traffic limit theorem.
The remainder of this article is organized as follows. Section 2 contains necessary preliminaries. The

proof of main result is given in Section 3. Finally, in Section 3 we state our conclusion.

2. PRELIMINARIES

The FBPS discipline can be described with some details in the following manner. A job with attained
service (the age) a does not receive service unless there are no jobs in the system with the age less than a.
The single processor simultaneously serves those and only those with the least age, but each at a rate 1

n if the
number of the youngest jobs is n, 1 ≤ n < ∞. Thus a job (or a set of jobs) with the least amount of attained
service (e.g., a new arrival) has the highest preemptive–resume priority which decreases in accordance with
an increment of its age. Jumps in the service rate occur at the epochs of arrivals, departures and when the
age of the jobs which share processor reaches to the age of some interrupted jobs. See [1], [4] and [5] for
additional information on the FBPS discipline.
We consider the M/D/1 queue where the jobs arrive according to a Poisson process with rate λ. The

service discipline is the FBPS described above. The job’s lengths, i.e., the service requirements, are i.i.d.
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random variables with the deterministic distribution (the job’s lengths are constant)

B(x) =
{

0, 0 ≤ x < u,
1, x ≥ u

that has the Laplace–Stieltjes transform (LST) β(s) = exp(−su) and the moments βi = ui, i = 1, 2, . . ..
The offered load is equal to ρ = λu < 1.We will use V to denote the steady–state sojourn time of a job in
the queue M/D/1—FBPS.
The starting point will be the Theorem 1 from [4, Appendix] describing (in more general set-up) the LST

v(s) .= E[e−sV ] of the sojourn time distribution, which gives us the following decomposition of V

V
d= G + Π. (2.1)

The equality (2.1) is rewritten in terms of the LST as v(s) = γ(s)π(s), where

γ(s) .= E[e−sG] = w(s + λ− λπ(s)) (2.2)

and π(s) .= E[e−sΠ] is the unique positive solution of the well–known functional equation for the LST of
the busy period distribution [6]

π(s) = β(s + λ− λπ(s)) (2.3)

with the smallest absolute value. The LST w(s) in (2.2) is given by the celebrated Pollaczek–Khintchine
formula

w(s) =
s(1− ρ)

s + λ− λβ(s)
.

It follows easily from the expressions above that E[V ] = E[G] + E[Π], where

E[G] = γ1 = E[W ]/(1− ρ) = λβ2/[2(1− ρ)2], (2.4)

E[W ] = λβ2/[2(1− ρ)], (2.5)

E[Π] = π1 = u/(1− ρ). (2.6)

3. MAIN RESULT

We will prove main theorem following the line sketched in [7].

Theorem 3.1. For the M/D/1—FBPS queue, limρ↑1 P(V/E[V ] ≤ x) has the density

q(x) = (πx)−1/2 exp(−x/4)− [erfc(x1/2/2)]/2, (3.1)

where
erfc(y) = 2π−1/2

∫ ∞

y
exp(−t2) dt. (3.2)

Proof. The basic step in the proof is to show that, when ρ ↑ 1, the random variable G/E[G] in (2.1)
converges in distribution to the random variable Q with the density q(x), that is,

G/E[G] d→ Q for ρ ↑ 1, (3.3)
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where E[G] is given by (2.4). To this end, we rewrite (2.3) to the form

π(s) = β(s +
sρ

1− ρ
fΠ(s)) (3.4)

taking into account (2.6). Here and further

fΠ(s) =
1− π(s)

sπ1
. (3.5)

This is the LST of the residual busy period distribution. Another probability term for it is the LST of the
excess ofΠ (that is, the LST of the random modification ofΠ). By analogy with (3.5), it holds the following
expression for the distribution of the residual length of a job

fB(s) =
1− β(s)

sβ1
. (3.6)

The first moments of the excess for the random variablesΠ andB will be denote as f1Π and f1B , respectively.
For example, it is well known that

f1B = β2/(2β1). (3.7)

Taking into account (2.3), one can rewrite (2.2) to the form

γ(s) = 1− ρ + ρfΠ(s), (3.8)

where fΠ(s) is given by (3.5). Now the equation (3.4) can be represented in terms of γ(s) as follows

π(s) = β

(
sγ(s)
1− ρ

)
.

Taking into account (3.5), (3.6) and the last equality, the equation (3.8) can be reduced to the form

γ(s) =
1− ρ

1− ρfB

(
sγ(s)
1−ρ

) . (3.9)

Let ε = 1− ρ, ε � 1. If we rewrite the equality (3.9) in terms of ϕε(s)
.= γ(ε2s), then we get

ϕε(s) = [1 + (1− ε)f1Bsϕε(s)αε(s)]−1. (3.10)

Here f1B is given by (3.7) and

αε(s)
.= E[e−sA] =

1− fB(εsϕε(s))
f1Bεsϕε(s)

.

Since the function αε(s) is analitical in the half–planeRe s > 0, continuous up toRe s = 0 and |αε(s)| ≤ 1,
then the value of αε(s) at s = it coincides with the value of the characteristic function for the same random
variable A, namely, E[eitA] at the point −t for all ε > 0. Hence ϕε(s) satisfies the quadratic equation

(1− ε)f1Bsαε(s)ϕ2
ε(s) + ϕε(s)− 1 = 0.

The solution of this equation is given by

ϕ(
εs) =

2
1 +

√
1 + 4(1− ε)f1Bsαε(s)

. (3.11)
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Because of limε↓0 ϕε(s) = 1, we have to choose the positive sign in the denominator of (3.11).
Let ε ↓ 0, then αε(s) → 1 for all 0 ≤ s < ∞. In virtue of this, the equality (3.11) yields

lim
ε↓0

γ(ε2s) =
2

1 +
√

1 + 4f1Bs
, 0 ≤ s < ∞.

This means that

lim
ρ↑1

γ

(
(1− ρ)2s

f1B

)
=

2
1 +

√
1 + 4s

, Re s ≥ 0. (3.12)

Now it is not difficult to invert the Laplace transform that stands in the right–hand side of (3.12). It yields
the right–hand side of (3.1) together with (3.2). Thus we proved the equality (3.3). In other words,

2(1− ρ)2β1

β2
G

d→ Q for ρ ↑ 1, (3.13)

where the density of the distribution of the random variable Q is given by (3.1).

It remains to note that (1− ρ)2Π d→ 0 as ρ ↑ 1. Then assertion of Theorem 3.1 follows from (3.13) and
(2.1). ut
Theorem 3.1 is interesting because, for the limiting distribution of the sojourn time scaled by its expec-

tation, a distribution other than exponential appears. This is the important difference in comparison with the
classical limit theorems for the FCFS queue (see, for example, Cohen [8] and Whitt [9]) and also with the
limit theorem for the conditional sojourn time distribution in the M/G/1 queue under egalitarian processor
sharing (see [7], [10] and [11]).
We can see from the right–hand side of (3.12) that our LST is very closely related to the LST of the

(scaled) canonical distribution of the reflected Brownian motion (RBM) starting off empty (see, for example,
Section 7 in Abate, Choudhury, Lucantoni and Whitt [12], in particular, (7.2) of the cited paper).

Corollary 3.1. The moments of the random variable Q are

qn = (2n)!/(n + 1)!, n = 1, 2, . . .

Proof. For simplicity, it is sufficient to use (7.3) from [12]. ut

Remark 3.1. For the case deterministic distribution of B(x) considered above, the discipline FBPS
coincides with the discipline LRPT (Longest Remaining Processing Time). The LRPT policy assumes that,
at every moment of time, only the set of jobs with the maximal remaining service time share the server in
pure (egalitarian) processor sharing fashion. Thus, the LRPT discipline biases towards the longest jobs.

Remark 3.2. Other interesting treatments of the M/G/1 queue under various service disciplines can be
found in Kleinrock [1, Ch. 4], Yashkov [5], [13], Cohen [8, Pt. 4], Cooper [14] and Conway et al. [15, Ch.
8].

It is well known that E[V ] in the M/G/1—FCFS queue is minimized for the case M/D/1—FCFS if one
imposes the constrains that λ and β1 are fixed. Taking into account Theorems 2 and 3 from [4, Appendix],
now it is easily to show that, in sharp contrast to the FCFS, E[V ] in the M/G/1—FBPS queue is maximized
for the case M/D/1—FBPS under the same constrains. Theorem 3.1 provides the tight upper bound for
the family of the all normalized versions of the sojourn time distributions in the work–conserving M/G/1
queue (in particular, for any processor sharing discipline). The upper bound is well suitable for numerical
calculations.
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4. CONCLUSION

We gave the simple analytical proof of the heavy traffic limit theorem for the distribution of the sojourn
time, scaled by its expectation, in the M/D/1 queue under foreground–background processor sharing disci-
pline. This theorem determines the tight upper bound for the set of all normalized versions of the sojourn
time distributions in the work–conserving M/G/1 queue as the offered load increases to one. The upper
bound have of practical interest and it is well suitable for numerical studies.
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