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Abstract—We extend the heavy traffic limit theorem for the stationary sojourn time distribution, suitably
scaled, in the M/G/1 egalitarian processor sharing (EPS) queue from [12], [13] to the case when the
M/G/1—EPS queue is modified by havingK ≥ 0 extra permanent jobs with infinite sizes.

1. INTRODUCTION

Egalitarian Processor Sharing (EPS) queueing systems first became popular by the works of Kleinrock [1]
and Yashkov [2], and were originally proposed by Kleinrock in 1967 to analyze the performance of time–
sharing schedulung algorithms in computers. Nowadays, the processor sharing paradigm has emerged as a
powerful concept for modeling of Web servers. In particular, the EPS has also become relevant in modeling
elastic traffic, the flow–level performance of bandwidth–sharing protocols in the nodes of modern computer–
communication networks, etc. (The Transmission Control Protocol (TCP) in adaptive window mechanism
can be considered as an example.)
In the EPS discipline, the processor (server) is shared equally by all jobs in the system. To put more

concretely, when 1 ≤ n < ∞ jobs are present in the system, each job receives service at rate 1/n. In other
words, all these jobs receive 1/n times the rate of service which a solitary job in the processor would receive.
Jumps of the service rate occur at the instants of arrivals and departures from the system. Therefore, the rate
of service received by a specific job fluctuates with time and, importantly, its sojourn time depends not only
on the jobs in the processor at its time of arrival there, but also on subsequent arrivals shorter of which can
overtake a specific job. This makes the EPS system intrinsically much harder to analyze than, say, the M/G/1
queue with the First Come — First Served (FCFS) or other classical disciplines.
The problem of the exact determination of the stationary sojourn time distribution in the M/G/1—EPS

queue was open a long time. This problem was first solved, after puzzling researchers for 15 years, by
Yashkov in [3],[2] in terms of double Laplace tranforms (LT). Another approach to the exact solution of the
same problem was proposed by Schassberger in [4]. (Later some additional contributions to this problem
were also made by Sengupta, van den Berg [5], Grishechkin, Whitt [6] and Nunez–Queija [7] among others).
From a probabilistic point of view, processor sharing queues are very interesting in view of their connections
with (non-trivial) branching processes (like the processes by Crump–Mode–Jagers). Nevertheless, the deep
investigation of the EPS queues is based on specific analytic methods introduced, in essence, in [3], [2]. We
refer also to [8] for the deep study and the state of the art in this area. Concerning recent breakthroughs to
the transient (time–dependent) analysis of the M/G/1-EPS queue see [9], [10] (and also [8], [11]) and the
references therein. Almost all available at present analytic solutions of the M/G/1—EPS system (and also
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many new) can be derived as special cases of our transient results which are obtained in [9] for more general
situation when the M/G/1—EPS queue is modified by having K ≥ 0 extra permanent jobs with infinite
sizes.
The purpose of this article is to extend the heavy traffic limit theorem for the stationary sojourn time

distribution, suitably scaled, in the M/G/1—EPS queue from [12], [13] to this case when there are K ≥ 0
extra permanent jobs. The case ofK = 0 was also studied independently by Sengupta [14] at the same time
as it was done in [12], and later also by Zwart in 2000.
The remainder of the article is organized as follows. Section 2 contains necessary preliminaries. The

proof of main result is given in Section 3. We note as important consequence that the scaled unconditional
sojourn time distribution has the form of the Mellin–Stieltjes convolution of two independent distributions:
the (K + 1)–phase Erlangian distribution and the service time distributionB(x). Finally, Section 4 contains
our conclusion.

2. PRELIMINARIES

We consider the stationary egalitarian processor sharing queue M/G/1 with the intensity λ of Poisson
input process (of the standard jobs) and service time (standard job’s size) distribution B(x) (B(0+) =
0, B(∞) = 1) with the mean β1 < ∞ and the Laplace–Stieltjes transform (LST) β(r). When there are
n ≥ 1 jobs in the EPS queueing system then each of them receives service at a rate which is 1/n times the
rate of service that a solitary job in the system would receive. The offered load is equal to ρ = λβ1 < 1.
The M/G/1—EPS queue is modified by havingK ≥ 0 extra permanent jobs with infinite sizes. Note that

the behaviour of this model is independent of the service time distribution of the permanent jobs because of
such jobs are always in service. We denote the conditional sojourn time of the standard (non permanent) job
with the size u as VK(u) and put vK(r, u) .= E[e−rVK(u)] (u is vieved as a parameter). As before, ρ is the
offered load to the system per unit of time due to the standard (the Poisson) jobs.
Our starting point will be the Proposition 4.1 from [9] describing the LST vK(r, u) of the sojourn time

distribution. Here we rewrite it as

Theorem 2.1. For ρ < 1 andK ≥ 0, it holds

vK(r, u) .= E[e−rVK(u)] = v(r, u)K+1, (2.1)

where v(r, u), the LST of the conditional sojourn time of the standard job (with the size u) in the M/G/1—EPS
queue without permanent jobs (that is, whenK = 0, then there are only the standard jobs), is given by

v(r, u) .= E[e−rV (u)] =
(1− ρ)δ(r, u)

1− ã(r, 0, u)/ψ(r, u)
. (2.2)

Here

ã(r, 0, u) = λ

∫ u

0
ψ(r, u− x)e−x(r+λ)(1−B(x))dx+ λe−u(r+λ)

∫ ∞

u
(1−B(x))dx, (2.3)

δ(r, u) =
e−u(r+λ)

ψ(r, u)
(2.4)

and ψ(r, u) is the LST w.r.t. x (argument r) of some unknown function Ψ(x, u) of the two variables, which,
in turn, is given by its LT w.r.t. u (argument q)

ψ̃(r, q) =
q + r + λβ(q + r + λ)

(q + r + λ)(q + λβ(q + r + λ))
, r ≥ 0, q > −λπ(r). (2.5)
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We note that π(r) in q > −λπ(r) (in (2.5)) is the LST of the busy period distribution, i.e., it is the positive
root of the celebrated Takacs functional equation

π(r) = β(r + λ− λπ(r)) (2.6)

with the smallest absolute value.

Remark 2.1. The formula for v(r, u) in Theorem 2.1 above is equivalent to the Theorem 4 from [2]
(except for a difference in notations).

3. THE RESULT

Taking into account (2.3) and (2.4), we can rewrite (2.2) as

v(r, u) =
(1− ρ)δ(r, u)

1− λ
∫∞
0 ϕ(r, x, u)(1−B(x)) dx

, (3.1)

where
ϕ(r, x, u) =

{
δ(r, u) for x ≥ u,
δ(r, u)/δ(s, u− x) for x < u.

(3.2)

Remark 3.1. The following equivalent form of (3.2) can sometimes be used to describe some important
extensions of Theorem 2.1 (although they are not discussed here)

ϕ(r, x, u) = e−(x∧u)(r+λ)+λ
∫ x∧u
0 ϕB(r,u−y) dy, x ∈ [0,∞),

where

ϕB(r, t) .=
∫ ∞

0
ϕ(r, x, t) dB(x) =

∫ t

0
e−

∫ t
t−x(r+λ−λϕB(r,y)) dy dB(x) + (1−B(t))e−

∫ t
0 (r+λ−λϕB(r,y)) dy.

Here the last expression is the functional equation for the LST of the terminating (at time t) busy period in
the M/G/1—EPS queue [3], [8]. The solution of this equation has been obtained in terms of the function
ψ(r, t) .= exp(−λ

∫ t
0 ϕB(r, y) dy) (more precisely, in terms of the LT w.r.t. t of ψ(r, t)— see (2.5)).

Further we shall use the notation

δj(u) = lim
r↓0

(−1)j ∂
jδ(r, u)
∂rj

,

ϕj(x, u) = lim
r↓0

(−1)j ∂
jϕ(r, x, u)
∂rj

, j = 1, 2, . . . .

Let ε = 1− ρ, ε << 1. Replacing r in (2.1) (and hence, in (2.2)) by εr and using the Tailor series expansion
in a point εr for small ε > 0, it follows that

vK(r, u) =

 ε
[
1− εrδ1(u) + ε2r2

2! δ2(u)− . . .
]

1− (1− ε)
[
1− εrϕ1(u) + ε2r2

2! ϕ2(u)− ε3r3

3! ϕ3(u) + . . .
]
K+1

. (3.3)

Here we used the notation

ϕj(u) = β−1
1

∫ ∞

0
ϕj(x, u)(1−B(x)) dx, j = 1, 2, . . . (3.4)
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where ϕj(x, u) is given above.
Taking into account that

E[VK(u)] =
(K + 1)u

1− ρ
= (K + 1)δ1(u) +

ρϕ1(u)
1− ρ

, K = 0, 1, 2, . . .

(see, for example, the formula (2.66) from [8], which, however, is stated only for the case K = 0, but can
easily be extended to K > 0, as it is done in [9, Corollary 4.1]), the similar chain of the inferences as
in [12], [13] can be used to prove the following theorem.

Theorem 3.1. For the M/G/1—EPS queue with K ≥ 0 permanent jobs, β1 < ∞ and any fixed u ∈
[0,∞),

lim
ρ↑1

P(VK(u)(1− ρ)/u ≤ x) =
(
1− e−x

)(K+1)∗
, x ≥ 0, (3.5)

where (K + 1)∗ is the symbol of the (K + 1)–fold Stieltjes convolution of the corresponding distribution
function with itself.

Proof. See arguments above and the proof of the main theorem in [13] (we omit the details). ut
Thus, the limiting distribution in the right–hand side of (3.5) is the (K + 1)–phase Erlangian distribution

with the mean (K + 1). Now the main theorem from [13] follows as the special case forK = 0.

Remark 3.2. Theorem 3.1 can be easily re–formulated in other equivalent forms.

It is clearly that the LST of the unconditional (on u) sojourn time distribution is given by

vK(r) .= E[e−rVK ] =
∫ ∞

0
vK(r, u) dB(u). (3.6)

Now we have the following consequence

Corollary 3.1.

lim
ρ↑1

vK(r(1− ρ)) =
∫ ∞

0

(
1

1 + ru

)K+1

dB(u). (3.7)

Proof. The result follows directly from (3.6), Theorem 3.1 above and bounded convergence theorem. ut

Remark 3.3. The formula (3.7) is the so–calledMellin–Stieltjes convolution (see [15]) of two independent
distributions: the (K + 1)–phase Erlangian distribution and B(x). In other words, the limiting distribution
is the product of two corresponding independent random variables.

Remark 3.4. We note that the Mellin–Stieltjes convolution (notation is
S∗) of some distribution function

A(x) andB(x) (x ∈ R+) is coincideswith the usual Stieltjes convolution (notation is ∗) of the distribution
functions A(ex) and B(ex). In other words,

C(x) .= A
S∗ B(x) =

∫ ∞

0
A(x/y)dB(y) = A ∗B(ex).

These results allow us to use the well known properties of the product of two random variables (see,
for example, Feller [16]) with the purpose to find explicit expressions for the limiting distributions of the
scaled sojourn time. It has of practical interest, in particular, in the case of heavy-tailed distributions B(x)
(more precisely, in the case of subexponential B(x), for example, with regularly varying tails (at infinity)).
In particular, an old result of Breiman (1965) that is hidden in [15, Theorem 8.15.3], says that if the random
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variable B has the distribution function 1 − B(x) ∼ xα`(x), α > 0, x > 0, where `(x) is slowly varying
function at infinity, and A is another random variable independent of B satisfying E[Aγ ] <∞ for some
γ > α, then

P(AB > x) ∼ E[Aα]P(B > x), x→∞. (3.8)

Due to (3.8), the expressions above are well suitable for numerical calculations in the heavy traffic case.
For example, if B(x) has a Pareto distribution, then the heavy–traffic limiting distribution of the sojourn
time belongs (for the case K = 0) to the class of Pareto Mixtures of Exponentials (PME), introduced in
Abate et al. [17]. We will not give the details here since ones can easily be retrieved using, say, the results
of [17] or by Shiryaev [18, Ch. 4] as supplement to the corresponding assertions above.

Remark 3.5. The results of the time–dependent exact solutions on the sojourn time and queue–length
distributions in the M/G/1 queue under three main disciplines (EPS, FBPS and LCFS with preemptions)
allow us also to obtain a number of other limit theorems — not only in the heavy traffic but even in
overloaded mode. Here we do not discuss these problems in details. Note only that the time–dependent
queue–length distribution in the M/G/1—EPS queue (under zero initial condition, K = 0 and in terms
of the triple transforms) coincides with that for the M/G/1 queue with preemptive LCFS discipline. Such
solution for the M/G/1—EPS queue is known at least with 1988 (see, for example, the formula (2.108)
in [8, p. 100] or the Theorem 3.2 [11] that holds for any 0 < ρ < ∞ in spite of the restriction ρ < 1 in the
corresponding statement [11, p. 202]). Thus, all transient performance measures for the number of jobs at
time t in the M/G/1 queue must coincide for the EPS and LCFS with preemptions. Of course, it is not true
for the time-dependent (and stationary, too) sojourn time distributions for these disciplines. We note also
that the time–dependent queue-length distribution in the M/G/1—FBPS queue has the form which sharply
differs from the EPS [8, Ch. 2, 3]. Concerning the optimal properties of the FBPS discipline see, for example,
Avrachenkov, Ayesta et al. [19] that supplements earlier results of Yashkov (1978), reflected, in particular,
in [8].

4. CONCLUSION

We gave the simple analytical proof of the heavy traffic limit theorem for the distribution of the sojourn
time, suitably scaled, in the M/G/1 queue under egalitarian processor sharing discipline with K ≥ 0
permanent jobs. This theorem represents some extension of the results [12], [13] and also it leads to
interesting new consequences which are convenient for obtaining explicit expressions well suitable for
numerical calculations. We pointed out also some trends of recent investigations.
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