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Abstract—Some results of the cooperation between IPPI and the coding group in Denmark are re-
viewed. From this starting point several new developments and open problems in concatenated codes
are discussed.

1. INTRODUCTION

In this presentation, I mention some classical results on concatenated codes, and in particular I touch
upon some results of the long cooperation between the laboratory of Victor Zyablov at IPPI and the coding
group at DTU. However, the aim is not to give an account of the history of the topic, but to use these results
as a starting point for discussing some recent developments and some open problems.
Concatenated codes have been at the focus of the research in both groups for more than three decades.

The reason is that not only has this technique become increasingly important in applications, but it has
also maintained its position as an essential method in theoretical analysis, and it has absorbed several new
developments in coding theory.

2. REED-SOLOMON CODES

A discussion of concatenated codes necessarily involves some details of Reed-Solomon codes as an
essential component of these constructions. Reed-Solomon codes were some of the first codes to appear in
the literature, and I prefer to take them as the starting point for developing algebraic coding theory. Their
properties can be explained in very simple terms:
Let the data be a sequence ofK symbols, interpreted as coefficients of a polynomialU(x). The transmitted

codeword is then a sequence of N > K values attained by this polynomial in N district points:

c = [U(x0), U(x1), . . . , U(xN−1)] (1)

Two distinct codewords can agree in at mostK − 1 points, since the difference polynomial can have at most
K − 1 roots.
Assume that T of the received values are in error. Decoding may be seen as an interpolation; the receiver

should find a polynomial which passes through as many of the received points as possible. The positions
of the errors are found by determining the coefficients of a polynomial E(x) of degree T with the error
positions as roots. If the received values are yj , we have

M(x) = U(x)E(x)

M(xj) = yjE(xj) (2)

since either

U(xj) = yj



PROBLEMS OF CONCATENATED CODES 285

or both sides are zero. If T ≤ (N −K)/2, there are enough linear equations to find the coefficients of M
and E.
The description of the coding problem in such basic terms has allowed new results in fundamental

computer science to be applied in our area.

3. CONCATENATED CODES

In Forney’s thesis [1], it was proved that concatenated codes using a combination of RS (outer) codes and
binary codes for each RS symbol (inner codes) could be used to reach the channel capacity with a favorable
combination of error probability and computational complexity. However, in reality this goal appeared out
of reach at the time.
Several results in the early 70s changed this perspective. A specific combination of inner and outer codes

was suggested as a practical way of obtaining good performance on deep-space channels. The space telemetry
standard is specified in detail in the Blue Book of the Consultative Committee for Space Data Systems [2],
an organization that has the American NASA, the European ESA, and the Russian Space Agency among its
members.
While in [1] concatenation was seen almost as a way of avoiding the construction of long codes, it was

found that the process could also be seen as a way of constructing a single long code with fairly good
parameters [3, 4]. Here a codeword is seen as a binary array where column j is a binary codeword in the
inner code representing the symbol cj = U(xj). Thus a solution was found to the problem of constructing
long codes with good distances. This point of view led to algorithms that correct all errors within half the
designed minimum distance. It follows immediately from the two-level construction that the distance of
the concatenated code is at least the product of the distances of the component codes. This bound is often
referred to as the Zyablov bound.
Unfortunately the results on the performance on the Binary Symmetric Channel (or the Gaussian Channel)

and the results on the distance properties are not clearly related. The exact distance of the standard code is
not known, and probably of little importance in applications. On the other hand algorithms that guarantee
correction of a certain number of errors are usually not effective with a random distribution of errors.
The separation between the results related to performance and to distances is further amplified by the use

of convolutional inner codes in most applications. There has been relatively little research in the properties
of concatenated codes with convolutional inner codes, although we established some of the fundamental
properties in [5]. Recently there has been some interest in so-called tail-biting codes as a bridge between
convolutional codes and block codes [6]. In a tail-biting code the encoding is done by a linear system as
in convolutional codes, but the encoding process circles through a limited number of information bits to
produce a block code. This approach would make the decoding of each column of symbols in a concatenated
code independent of the rest of the code, providing some benefits both for the implementation and the
analysis. With a suitable choice of parameters the performance would not change much, but it is unknown
whether it can actually be improved by the right choice of parameters.
By considering averages of codes with random inner codes, it has been proved that concatenated codes

can have the same properties as general average codes with the same parameters [7, 8]. However, in this case
the parameters of the component codes have to be chosen in a way that appears to rule out separate decoding
of the inner and outer codes. There are several known cases where the binary images of RS codes are very
good binary codes. A recently reported example is the (160, 80, 24) codes [9]. For low-rate concatenated
codes with good short inner codes, the Zyablov bound is sufficient to prove that the binary codes have good
distances. Codes of length 85 can serve as a small example, but no specific good code with a non-trivial
inner code and distance above the Zyablov bound has been reported.
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4. APPLICATIONS IN COMMUNICATION SYSTEMS

In 1985/86 the concatenated coding standard was used in two spectacular space missions. In NASA’s
Voyager the code was used to send back images and telemetry from the planet Uranus, and Voyager has
since continued to transmit data from the outer parts of the Solar system. ESA’s GIOTTO probe made a close
encounter with Halley’s comet producing closeup images and measurements of the environment of the active
comet. In this case the communication problem was not related to the distance, but to the unknown hazards
of the encounter. Actually the probe survived the flyby, but the signal level started varying periodically when
dust particles made the probe oscillate around its proper alignment.
Our work on the GIOTTO decoder produced an important feedback from the realities of communication

systems. In particular it demonstrated that the interaction of the error-correcting code with other parts of
the communication system is more complicated than we expected, and that building the decoders was a less
complicated task. The activities since then have further emphasized these points.
In addition to a growing number of applications in communication systems, concatenated codes are now

also commonly used in digital storage media [10].
A long concatenated code is, at least in this context, part of the structure of a block of data commonly

referred to as a frame. In addition to the user data, the frame contains a synchronization pattern and some
header information like a serial number and an address. The decoding of the RS code requires that the
beginning of the frame is correctly identified, and even in the presence of errors this decision can usually be
made with sufficient reliability. But the interaction of error-correction and synchronization is not adequately
described in the literature. The header information must usually be available without complete decoding of
the frame. In storage systems that can lead to problems with false sequence numbers, whereas in networks
the addresses are a particular concern. This is an area that has frequently been marred by design errors, and
network models in particular do not have a consistent way of treating error-correcting codes.
The implementation of decoders for concatenated codes shows that RS codes are well suited for mod-

ern digital technology in spite of their apparent complexity. At low data rates, a suitable program for a
microprocessor may be the choice, but usually faster solutions are required. At present decoders are often
implemented in Field Programmable Gate Arrays (FPGA). In this way the circuit is actually configured by
downloading a program, and it is even possible to make changes later by modifying the software. Standard
decoding methods (syndrome calculation, solution for the error locator polynomial by Euclid’s algorithm,
etc.) can be efficiently converted to parallel versions and used in such systems. Such algorithms are still
commonly used, but there is a long line of research in faster methods based on fast transforms, probably
starting with Afanasyev’s paper [11]. The fast algorithms allow a significant speed-up of parallel decoders,
and the use of RS codes in optical communication systems may eventually make such decoders a reality.
However, while there is some work done on the details of the implementations in the industry [12, 13], the
theoretical work on complexity does not seem to have produced results on space/time bounds for parallel
algorithms.

5. ALGEBRAIC GEOMETRY CODES AS OUTER CODES

One of the spectacular advances in coding theory in the ’80s was the development of long codes over
large alphabets using methods from Algebraic Geometry. Such codes are generalizations of RS codes in the
sense that codewords are obtained by evaluating an information polynomial as in (1), but

xj = (vj , wj)

is a point of an algebraic curve, usually a point in the plane satisfying some defining equation

F (v, w) = 0

In this way it is possible to keep the alphabet fixed and let the length of the code increase. Decoding of
such codes can be seen as a generalization of decoding RS codes as described in [14], which is in part based
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on work I did while visiting IPPI. However, a version of the algorithm that exploits fast transforms has not
yet been described in a satisfying form.
While algebraic geometry so far has not produced good direct constructions of binary codes, long binary

codes have been obtained by concatenation [15]. We can also fix the inner code in a concatenated code and
consider outer codes of increasing length with a randomized mapping of the symbols [16].

6. DECODING MORE ERRORS

If the decoding of the inner code leads to more than (N − K)/2 errors, the result of decoding the RS
code is usually a decoding failure. Even though it is easy to construct examples where additional errors cause
decoding to a wrong codeword, such cases are extremely rare, and in principle more errors can be corrected.
Efforts to modify the decoding methods had very limited success until Sudan’s work on interpolation was
applied to the problem [17]. Sudan’s idea was to rewrite (2) as

Q(xj , zj) = yj

and factor the two-variable interpolating polynomial Q. In this way one will in general find a list of factors
of the form

z − Ui(x)

which represent different possible codewords. Usually there is only one factor, and the major improvement
is that, at least for low rates, some additional errors can be corrected.
For concatenated codes, more efficient decoding would be possible if the inner decoder produced a short

list of possible codewords rather than a single result. This approach was first discussed in Pinsker and
Zyablov’s paper [7], where the authors proved that decoding of the inner code within a suitable sphere would
always produce a very small number of results. In [7] this result was combined with a complex approach to
the decoding of the outer codes. Recently there has been some work on using a list input in a generalized
version of Sudan’s algorithm [18]. However, the gains for concatenated codes so far appear to be limited.
It may be useful to note that if the input list is very small and there are no errors, the RS code can be

decoded by solving a system of linear equations: Let the symbols in some subsets of the positions j ∈ J
have two possible values. Choose one of the values arbitrarily, and calculate the syndrome of the received
word, s. For each position find the change that the other choice of the symbol would add to the syndrome,
and solve the binary equations ∑

j∈J ajsj

where aj = 1 indicates that the symbol in position j should be changed. However, no way of combining this
approach with error correction is known.
A more recent variant of the interpolation approach allows more errors to be corrected when several

codewords are interleaved (as it is common usage), and the errors in all codewords are confined to a common
set of positions [19]. Thus (2) becomes

Mi(x) = Ui(x)E(x)
Mi(xj) = yijE(xj)

and by comparing the number of equations and the number of unknown coefficients one finds that as many
as

(N −K)I/(I + 1)
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errors can be corrected where I is the number of outer codes. Clearly this is not always possible. However,
as indicated in [20] there is actually a high probability of successful decoding. The method appears very well
suited for decoding of concatenated codes, but more work is needed to establish the choice of parameters
and details of the decoding algorithm that will give a real gain.

7. CONCATENATED CODES FROM GRAPHS

Recently a generalized form of concatenated codes has been described as codes defined on bipartite
expander graphs [21]. A special case is studied in more details in [22], and here the connection to the usual
concatenated codes is also made more explicit.
LetM be a cyclic incidence matrix for a projective plane with S lines and points. Thus each row has n

1s. The largest eigenvalue is n, and all remaining eigenvalues have modulusλ =
√

n− 1. A bipartite graph
consisting of two sets of S nodes of order n is described by the connection matrix

A =
(

0 M
M t 0

)
This matrix may be seen as a simple expander graph: Starting from a node in the right set, n nodes in the

left set can be reached in one transition, and the remaining nodes in the right set can be reached from these
nodes. We have

S = n(n− 1) + 1

The graph can be used to define a code by associating a symbol with each branch and letting all branches
that meet in a node satisfy the parity checks of an (n, k, d) code. Thus the length of the code is

N = Sn

If the rate of the code associated with the nodes is r, the total rate is

R ≥ 2r − 1

For our purpose we will choose codes on both sides of the graph as extended RS codes over the field of
q = n− 1 symbols, since in this way the same field is used in constructing the projective plane. But we will
refer to the codes on the right as the inner codes, since the symbols are converted to binary vectors, and the
right side is decoded as binary codes.
In order to obtain a lower bound on the minimum distance, we want to determine the smallest size of sets

of nodes in each of the two parts of the graph, s, such that the subgraph consisting of these nodes and the
branches connecting them has degree at least d. Clearly in this case sd is a lower bound on the minimum
distance. It follows from the expansion property of the graph that the minimum distance satisfies the product
bound if d >>

√
n.

The decoding can make use of the graph structure of the code. First decode the binary images of the
right side codes. For each F (q) symbol in a given position, propagate a message along the branch in the
graph indicating the minimum number of binary errors corrected in the first stage of decoding. Using these
messages, decode the left codes as RS codes. Pass the result to the right side, and consider these codes as
RS codes. Each code on the right side is now the root of a tree code consisting of all codes on the right side,
a small subset of codes on the left side, and all symbols in the total code. To get a complete decoding, the
results from several of these trees must be reconciled.

8. CONCLUDING REMARKS

This presentation mentions only a small part of the research on concatenated codes. The topics discussed
here reflect my personal interests, and they were chosen to illustrate some of the interactions between coding
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theory and related subjects and between different areas of coding theory. I consider it a privilege to have
been involved with this line of research, both on the scientific side and in applications over many years.
During this entire period, many of the essential inputs have come from working with colleagues at Institut
Problem Peredachi Informatsii.
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