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Abstract—The theory of circle homeomorphisms has a great number of deep results. However,
sometimes continuity or single-valuedness of a circle map may be restrictive in theoretical
constructions or applications. In this paper it is shown that some principal properties of circle
homeomorphisms are inherited by the class of orientation-preserving circle maps. The latter
class is rather broad and contains not only circle homeomorphisms but also a variety of non
continuous maps arising in applications. Of course, even in cases when a property remains
to be valid for orientation-preserving circle maps, absence of continuity sometimes results in
noticeable changes of related proofs.
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1. INTRODUCTION

Orientation-preserving circle homeomorphisms possess a lot of interesting and non-trivial prop-
erties [4, 7] and play an important role in various fields of mathematics. Among such properties is
the property of the rotation number of the homeomorphism f to be rational if and only if f has a
periodic point, and also the Poincaré classification theorem giving conditions under which a circle
homeomorphism is conjugate to a circle rotation map.

However, sometimes continuity of a map f may be restrictive (see, e.g., [1, Ch. VIII] or [2, 5]).
Therefore, it is desirable to distinguish a class of circle maps into itself retaining as many as possible
of the properties of homeomorphisms while remaining rather broad and containing not only circle
homeomorphisms but also non continuous maps. One such class of maps will be considered below.
It is the class of so-called orientation-preserving circle maps which in general are not continuous.

Of course, if a circle map lacks continuity than it inevitable loses some of its properties. An
elementary examples in Section 3 demonstrate that a discontinuous circle map with rational rotation
number may have no periodic points, or it may have periodic points with different coprime periods.

The paper is organized as follows. Sections 2–6 are devoted to the investigation of the case
of single-valued discontinuous circle maps. In Section 2, basic properties of orientation-preserving
circle maps and their lifts, strictly monotone maps of degree one, are discussed. Such maps are
chosen in the paper as a replacement for circle homeomorphisms. Section 3 contains the definition
of the rotation number τ(F ) for the strictly monotone map F : R → R of degree one, and proofs
of basic properties of τ(F ) are also discussed. In Section 4, it is shown that τ(F ) depends con-
tinuously on the graph of F in the Hausdorff semi-metric, which generalizes usual statements on
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continuity of the rotation number of circle homeomorphism. In Section 5, it is proved that, in the
case of irrational rotation number, iterations of a point under F are ordered like those for the cor-
responding rotation map. From this a restricted version of the Poincaré Classification Theorem for
circle homeomorphisms is deduced, stating that an orientation-preserving circle map with irrational
rotation number is semi-conjugate to a circle rotation map. Section 6 is devoted to investigation
of the problem of whether or not an orientation-preserving circle map has bi-infinite trajectories.
Finally, in Section 7 the case of set-valued circle maps with closed graphs is considered. A similar
situation was investigated in [3] where the main results are established for the set-valued maps
with connected images, whereas the set-valued maps studied in Section 7 may have disconnected
images.

2. MONOTONE MAPS OF DEGREE ONE

Consider the class of all strictly monotone1 maps F : R → R of degree one2, i.e., class of all
maps F : R → R satisfying

F (x + 1) ≡ F (x) + 1, F (x) < F (y) for x < y. (1)

Point out that generally maps satisfying (1) are not supposed to be continuous. At the same time
namely continuous strictly monotone maps of degree one play an important role in investigation of
circle homeomorphisms [4,7]. To be more precise, each strictly monotone continuous map F : R → R
of degree one generates with the help of the relation

f(x) = F (x) (mod 1) (2)

the orientation-preserving homeomorphism f of the circle S1 = R/Z which is convenient to treat
as the interval [0, 1) with topologically identified points 0 and 1. Reverse is also true: for any
orientation-preserving circle homeomorphism f there exists infinitely many strictly monotone con-
tinuous maps F : R → R of degree one satisfying (2); such maps are called lifts of f . A strictly
increasing lift F of the map f will be called standard if it satisfies F (0) = f(0). It is worth pointing
out here that any two lifts of the orientation-preserving circle homeomorphism f differ from each
other on an integer constant.

Now, suppose that the map F is no longer continuous. What happens as a result of such sup-
position? This is the main question which will be studied below.

Notice first, that condition (1) implies

0 < F (y)− F (x) < 1 for 0 < y − x < 1. (3)

From (1) and (3) the next lemma immediately follows.

Lemma 1. Any iteration of strictly monotone map F of degree one is also strictly monotone map
of degree one. The map F∗(x) = F (x)− x is 1-periodic and satisfies

|F∗(x)− F∗(y)| < 1, ∀ x, y ∈ R. (4)

Mutual properties of maps F : R → R and f : S1 → S1 tied by relation (2) are described by the
following lemma (see, e.g., [6]).

1 Throughout the paper the term strictly monotone is used as equivalent of the term strictly increasing.
2 The map F : R → R are said to be of degree k ∈ Z if F (x + 1) ≡ F (x) + k.
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Lemma 2. Let F : R → R be a strictly monotone map of degree one. Then for the map f defined
by (2) there exist subintervals I+(f), I−(f) ⊆ [0, 1), one of which may be empty, such that

(i) 0 ∈ I+(f), I+(f) ∩ I−(f) = ∅, I+(f) ∪ I−(f) = [0, 1);
(ii) f(x) is one-to-one increasing map on each of the intervals I+(f) and I−(f);
(iii) f(x) > f(y) for any x ∈ I+(f), y ∈ I−(f)
Conversely, for any map f : S1 → S1 satisfying conditions (i)–(iii) there exists a strictly

monotone lift F : R → R of degree one. Any two strictly monotone lifts of f of degree one differ
from one another by a constant.

1

10

f x( )

F( )x

w

w+1

I f+( ) I f-( )

Figure 1. Orientation-preserving circle map f(x) and its standard lift F (x).

Maps f : S1 → S1 satisfying conditions (i)–(iii) of Lemma 2 will be referred to as orientation-
preserving circle maps (see, e.g., [6]). Typical plot of an orientation-preserving circle map is pre-
sented on Fig. 1. It is worth pointing out that under supposition that the map F is generally
discontinuous, the corresponding orientation-preserving circle map f defined by (2) is also discon-
tinuous.

3. ROTATION NUMBER

In this Section it will be shown that strictly monotone maps F : R → R of degree one share
basic properties of lifts of circle homeomorphisms although proofs are changed comparing with
traditional proofs which usually based on the continuity of related maps (see, e.g., [4, Ch. 11]).
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Theorem 1. Let F : R → R be a strictly monotone map of degree one. Then for any x ∈ R there
exists independent from x number τ(F ) ( the rotation number of the map F ) such that∣∣∣∣Fn(x)− x

n
− τ(F )

∣∣∣∣ ≤ 2
n

. (5)

If the map f = F (mod 1) has a q-periodic point then τ(F ) is rational of the form p/q.

Proof. The proof is an insignificant modification of usual proofs known for the case of homeo-
morphisms (see, e.g., [4, 7]) and is given below for the sake of completeness.

Fix an x ∈ R and an integer n > 0 and set F (n)(x) = Fn(x)− x. Then by Lemma 1

F (n)(0)− 1 ≤ Fn(x)− x = F (n)(x) ≤ F (n)(0) + 1. (6)

Now, add together the relations (6) for points x = y, Fn(y), . . . , F (m−1)n(y) with an arbitrary y ∈ R:

m(F (n)(0)− 1) ≤ Fmn(y)− y ≤ m(F (n)(0) + 1). (7)

Dividing (7) by mn and subtracting from it the relation (6) divided by n, we get∣∣∣∣Fmn(y)− y

mn
− Fn(x)− x

n

∣∣∣∣ ≤ 2
n

. (8)

Analogously can be obtained the relation∣∣∣∣Fmn(y)− y

mn
− Fm(x)− x

m

∣∣∣∣ ≤ 2
m

. (9)

and thus, ∣∣∣∣Fm(x)− x

m
− Fn(x)− x

n

∣∣∣∣ ≤ 2
n

+
2
m

. (10)

From (10) it follows that {(Fn(x)− x)/n} for any x ∈ R is a Cauchy sequence and so it has a
limit τ(F, x). Then, firstly taking the limit in (8) as m →∞ we get∣∣∣∣τ(F, y)− Fn(x)− x

n

∣∣∣∣ ≤ 2
n

, (11)

and secondly taking the limit in (11) as n →∞ we deduce that |τ(F, y)− τ(F, x)| = 0, from which
it follows that the limit τ(F, x) in fact does not depend on x, i.e., τ(F, x) ≡ τ(F ).

Now, from the identity τ(F, x) ≡ τ(F ) and (11) we obtain (5).
To finalize to proof it remained to show that the rotation number τ(F ) is rational in the case

when the map f = {F} has a periodic point. Let f q(x) = x for some x ∈ [0, 1) and integer q > 0.
Then F q(x) = x+p for some integer p and therefore Fmq(x) = x+mp for any integer m = 1, 2, . . ..
Hence

Fmq(x)− x

mn
=

mp

mn
=

p

q

and taking the limit as m → ∞ in the left side of the last equality we conclude that τ(F ) = p/q.
Theorem is proved. ut

If f is an orientation-preserving circle map and F is its strictly monotone lift of degree one then
the value τ(f) := τ(F ) (mod 1) is called the rotation number of f . Since by Lemma 2 any two
strictly monotone lifts of f of degree one differ from each other on an integer constant then the
value τ(f) is well defined.
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Remark 1. Unfortunately, the reverse statement, usual for homeomorphisms, that rationality
of τ(F ) implies the existence of a periodic point of the map f = F (mod 1) is not valid under
conditions of Theorem 1. Indeed, as is easy to see the map f(x) = (x + 1)/2 defined on [0, 1) has
no periodic points while for any its strictly monotone lift F of degree one the equality τ(F ) = 0
is valid. Nevertheless, the corresponding statement is valid for discontinuous maps in a slightly
modified form.

Given a strictly monotone map F : R → R of degree one, one can consider its upper and lower
associated maps, F+ and F−, defined as

F+(x) = lim
s→x,s>x

F (x), F−(x) = lim
s→x,s<x

F (x).

Clearly, since F (x) is monotone, maps F+ and F− are defined correctly and the both of them are
strictly monotone maps of degree one satisfying

F−(x) ≤ F (x) ≤ F+(x). (12)

Theorem 2. Let F : R → R be a strictly monotone map of degree one with rational rotation
number τ(F ) = p/q. Then either the map f = F (mod 1) or the map f− = F− (mod 1) or the
map f+ = F+ (mod 1) has a periodic point of period q.

As it will be shown later in Theorem 4, τ(f) = τ(f−) = τ(f+). Then, by supposing in Theorem 4
that τ(f) = τ(f−) one may derive the following

Corollary 1. Let F : R → R be a strictly monotone map of degree one with rational rotation
number τ(F ) = p/q. Then either the map f− = F− (mod 1) or the map f+ = F+ (mod 1) has a
periodic point of period q.

To prove Theorem 2 we will need a simple fixed-point statement concerning monotonic maps.

Lemma 3. Let h : [a, b] → R1 with −∞ < a < b < ∞ be a non-decreasing map.3 If h(a) ≥ a and
h(b) ≤ b then there exists such an x∗ ∈ [a, b] for which h(x∗) = x∗.

Proof. If h(a) = a or h(b) = b then Lemma is proved. So, without loss in generality one may
suppose that h(a) > a and h(b) < b. Consider the set

X∗ = {x : h(x) > x, x ∈ [a, b]} .

From supposition that h(a) > a and h(b) < b it follows that

[a, h(a)) ⊆ X∗, (h(b), b] ⊆ [a, b]\X∗, (13)

since by monotonicity of the function h one have:

x < h(a) ≤ h(x), for x ∈ [a, h(a))

and
h(x) ≤ h(b) < x, for x ∈ (h(b), b].

From (13) it follows that the set X∗ contains infinitely many points and thus possesses a maximal
accumulation point x∗, i.e. such a point that in each its left neighborhood there are infinitely many
3 The map h is not supposed to be continuous.
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points from X∗ and to the right from it there are only finitely many points from X∗. Then to
the right from x∗ there are infinitely many points from [a, b]\X∗. Hence there exist yn → x∗ and
zn → x∗, such that

yn < x∗, yn < h(yn) and x∗ ≤ zn, h(zn) ≤ zn (14)

for all n = 1, 2, . . ..
From (14) it follows that

yn < h(yn) < h(x∗) ≤ h(zn) ≤ zn

and taking here the limit when yn → x∗ and zn → x∗ we get h(x∗) = x∗. ut
In proving Theorem 2 we will follow the scheme of proof of the corresponding statement from [4,

see. Prop. 11.1.4] with necessary changes caused by possible discontinuity of the map F .

Proof of Theorem 2. By definition of the rotation number τ(f) = τ(F ) (mod 1) we have

τ(f q) = lim
n→∞

1
n

((F q)n(x)− x)) = q lim
n→∞

1
qn

((F qn(x)− x)) = qτ(f) (mod 1).

So, τ(f q) = 0 since the rotation number of the map f is defined with the accuracy to an integer.
Then to prove Theorem it suffices to show that the relation τ(f) = 0 implies that either f− or f+

has a fixed point.
Consider now such a lift F of the map f for which F (0) ∈ [0, 1). If F (x) − x ≤ 0 for some

x ∈ [0, 1) then by Lemma 3 the map F has a fixed point which implies that the map f also has a
fixed point. Analogously, if F (x)− x ≥ 1 for some x ∈ [0, 1) then by Lemma 3 the map F − 1 has
a fixed point from which again follows the existence of a fixed point for the map f . So, we should
only consider the case when

0 < F (x)− x < 1 for x ∈ [0, 1).

If
inf

0≤x<1
{F (x)− x} = 0

then either min0≤x≤1 {F−(x)− x} = 0 or min0≤x≤1 {F+(x)− x} = 0. In the former case the map
F− has a fixed point while in the latter case the map F+ has a fixed point, and in both cases
Theorem is proved.

If
sup

0≤x<1
{F (x)− x} = 1

then either max0≤x≤1 {F−(x)− x} = 1 or max0≤x≤1 {F+(x)− x} = 1. In the former case the map
F−− 1 has a fixed point while in the latter case the map F+− 1 has a fixed point. This means that
either the map f− or the map f+ has a fixed point. So, again, in both cases Theorem is proved.

It remained to consider only the case, when there exists such a δ > 0 for which

δ < F (x)− x < 1− δ for x ∈ [0, 1).

Putting in the above inequalities the values x = F i(0) and sum the resulting estimates from i = 0
to i = n− 1 we get

nδ < Fn(0) < n(1− δ)

or
δ <

Fn(0)
n

< 1− δ.

Now, taking here the limit as n → ∞ we conclude that δ < τ(F ) < 1 − δ and thus τ(f) 6= 0. A
contradiction, which completes the proof of Theorem. ut
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4. CONTINUITY OF THE ROTATION NUMBER IN THE HAUSDORFF METRIC

As is known, the rotation number τ(f) of a circle homeomorphism f depends continuously on
f in the topology of uniform convergence (see, e.g., [4, Prop. 11.1.6]). Clearly, the same is valid
for rotation numbers of strictly monotone continuous maps of R of degree one. In the general case,
when considering discontinuous maps, the uniform or even pointwise convergence is too restrictive.
So, below it will be proposed a more general result on continuity of the function τ(F ).

Denote by Γ(F ) := {z ∈ R2 : z = (F (x), x), x ∈ R} the graph of the map F . Denote by ‖z‖ the
max-norm in R2, i.e., ‖z‖ = max{|z1|, |z2|}. And, at last, define the Hausdorff semi-metric between
graphs of strictly monotone maps F and G of degree one as

χ(F,G) = max

{
sup

z∈Γ(F )
inf

u∈Γ(G)
‖z − u‖, sup

u∈Γ(G)
inf

z∈Γ(F )
‖u− z‖

}
.

Point out that χ(F,G) possesses all the properties of metric except one: since graph of discontinuous
map is not closed then it may happen that χ(F,G) = 0 while F 6= G. Generally, convergence defined
by the semi-metric χ(F,G) is weaker than uniform or even pointwise convergence. Nevertheless,
there are situations when χ-convergence implies pointwise convergence.

Lemma 4. Let m be an integer and let x, F (x), . . . , Fm−1(x) be points of continuity for the map
F and χ(F, Fn) → 0. Then Fm

n (xn) → Fm(x) for any sequence {xn} such that xn → x.

Proof. Prove first Lemma for the case m = 1. Given the sequences {Fn} and {xn}, by definition
of the Hausdorff metric χ for any n = 1, 2, . . . it may be chosen yn = (F (zn), zn) ∈ γ(F ) such that

‖(Fn(xx), xn)− yn‖ ≤ χ(F, Fn).

Then by definition of the max-norm ‖ · ‖

|xn − zn| ≤ χ(F, Fn) → 0, (15)

|Fn(xn)− F (zn)| ≤ χ(F, Fn) → 0. (16)

From (15) and condition that xn → x it follows that zn → x. Then by continuity of the map F
at the point x we get F (zn) → F (x) and in view of (16) Fn(xn) → F (x). Lemma is proved for the
case m = 1.

Ie the general case Lemma can be proved by induction. Suppose that the statement of lemma
is valid for k = p− 1 with 1 ≤ p− 1 < m, prove that then it is valid for k = p.

By supposition un = F p−1(xn) → F p−1(x) as xn → x where by condition of Lemma F p−1(x) is
the point of continuity of F . Then by the already proven statement of Lemma for the case m = 1
we get F p(xn) = F (un) → F (F p−1(x)) = F p(x). The step of induction is completed and so, Lemma
is proved. ut

Theorem 3. Let F , Fn, n = 1, 2, . . ., be strictly monotone maps of degree one such that χ(F, Fn) →
0 as n →∞. Then τ(Fn) → τ(F ) as n →∞.

Proof. Denote by D1(F ) the set of all points of discontinuity for the map F ; since F by supposi-
tion is monotone then the set D1(F ) is countable. By supposition the map F is not only monotone,
it is strictly monotone and thus injective. Then the set D2(F ) := {x : F (x) ∈ D1(F )} is also
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countable. Analogously, each set Dn(F ) := {x : Fn(x) ∈ D1(F )}, n = 2, 3, . . ., is also countable4.
Then the set

D(F ) =
⋃
n≥1

Dn(F ).

is also countable. Hence the set C(F ) = R\D(F ) consisting of all x ∈ R such that x, F (x), F 2(x), . . .
are points of continuity for the map F is not empty.

Choose now an ε > 0 an fix some x ∈ C(F ). Then by Theorem 1 for any integer m satisfying
m ≥ 6/ε there will be valid estimate∣∣∣∣Fm(x)− x

m
− τ(F )

∣∣∣∣ ≤ ε

3
. (17)

Fix any m for which the above estimate is true. Then, by definition of the set C(F ) and choice
of the point x ∈ C(F ), according to Lemma 4 Fm

n (x) → Fm(x) as n → ∞. Hence such an N(ε)
can be chosen that ∣∣∣∣Fm

n (x)− x

m
− Fm(x)− x

m

∣∣∣∣ ≤ ε

3
as n ≥ N(ε). (18)

At last, again by Theorem 1 since m ≥ 6/ε then∣∣∣∣Fm
n (x)− x

m
− τ(Fn)

∣∣∣∣ ≤ 2
m
≤ ε

3
, ∀ n. (19)

From (17), (18) and (19) one can deduce that |τ(Fn)− τ(F )| ≤ ε for n ≥ N(ε) and hence
τ(Fn) → τ(F ) as n →∞. Theorem is proved. ut

Now, one important corollary of Theorem 3 specific to discontinuous strictly monotone maps of
degree one will be proved. Strictly monotone maps F and G of degree one will be called equivalent
if

F−(x) ≤ G(x) ≤ F+(x), x ∈ R. (20)

Clearly, relations F−(x) ≤ G(x) ≤ F+(x) imply relations G−(x) ≤ F (x) ≤ G+(x), so the definition
of equivalency of F and G is correct.

Theorem 4. If F and G are equivalent strictly monotone maps of degree one then τ(F ) = τ(G).

Proof. From definition of the rotation number it follows that τ(F1) ≤ τ(F2) if F1(x) ≤ F2(x)
for x ∈ R. Then the relations

F−(x) ≤ F (x), G(x) ≤ F+(x)

imply
τ(F−) ≤ τ(F ), τ(G) ≤ τ(F+). (21)

Now, from the fact that Γ(F−) = Γ(F+)5 the relation χ(F−, F+) = 0 follows. Then by Theorem 3
τ(F−) = τ(F+) which, in view of (21), implies that τ(F ) = τ(G). Theorem is proved. ut

4 Strictly speaking, each of the sets Dn(F ) consists of no more that countably many points.
5 Remark, that generally χ(F, F+) 6= 0 and χ(F, F−) 6= 0 as is, for example, in the case when F (x0) 6= F−(x0) and

F (x0) 6= F+(x0) for some x0. Clearly, x0 in this case is such a point of discontinuity of F for which (F (x0, x0)) is
an isolated point of the graph Γ(F ).
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5. SEMI-CONGUJACY WITH A CIRCLE SHIFT MAP

One of the most important results of the theory of circle homeomorphisms is one stating that
each circle homeomorphisms with irrational rotation number semi-conjugate to a circle shift (or
rotation) map

ρτ (x) := x + τ (mod 1), x ∈ [0, 1). (22)

As it turned out the same result is valid also for generally discontinuous orientation-preserving
circle maps. It is worth pointing out that generally related proofs are changed.

Prove first that orbits of an orientation-preserving circle map f with irrational rotation number
τ(f) are ordered exactly as those for the circle shift map ρτ with τ = τ(f).

Lemma 5. Let F be a strictly monotone lift of degree one of an orientation-preserving circle map
f with irrational rotation number τ = τ(F ). Then for any n1, n2,m1,m2 ∈ Z and x ∈ R

n1τ + m1 < n2τ + m2 if and only if Fn1(x) + m1 < Fn2(x) + m2.

Proof. First consider the case when Fn1(x) + m1 < Fn2(x) + m2 and n1 < n2. By setting
y = Fn1(x) the former inequality is equivalent to y < Fn2−n1(y) + m2 −m1. From this, since the
map F is strictly monotone and of degree one, we obtain

y < Fn2−n1(y) + m2 −m1 < Fn2−n1(Fn2−n1(y) + m2 −m1) + m2 −m1 =
= F 2(n2−n1)(y) + 2(m2 −m1).

Inductively,
y < F k(n2−n1)(y) + k(m2 −m1), k = 1, 2, . . . ,

and so

τ = τ(F ) = lim
k→∞

F k(n2−n1)(y)− y

k(n2 − n1)
> lim

k→∞

k(m2 −m1)
k(n2 − n1)

=
m2 −m1

n2 − n1

(with a strict inequality due to irrationality of τ). Hence,

n1τ + m1 < n2τ + m2.

Now, consider the case when Fn1(x) + m1 < Fn2(x) + m2 while n1 > n2. Then by setting
y = Fn2(x) we get Fn1−n2(y) + m1 −m2 < y. From this, as in the previous case, we obtain

F k(n1−n2)(y) + k(m1 −m2) < y, k = 1, 2, . . . ,

Then

τ = τ(F ) = lim
k→∞

F k(n1−n2)(y)− y

k(n1 − n2)
< lim

k→∞

k(m1 −m2)
k(n1 − n2)

=
m1 −m2

n1 − n2

(with a strict inequality due to irrationality of τ) which again imply

n1τ + m1 < n2τ + m2.

Thus we have proved that Fn1(x) + m1 < Fn2(x) + m2 implies n1τ + m1 < n2τ + m2. Similarly
Fn1(x) + m1 > Fn2(x) + m2 implies n1τ + m1 > n2τ + m2 and equality in the considered relations
never occurs (since τ is irrational and thus F has no periodic points). So, the lemma is proved. ut

The preceding lemma demonstrates that in the case of irrational rotation number iterations
of a point under F ordered like those for the corresponding rotation. The following Theorem is a
restricted version of the Poincaré Classification Theorem for circle homeomorphisms [4, Th. 11.2.7].
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Theorem 5. Let f : S1 → S1 be an orientation-preserving map (generally discontinuous) with
irrational rotation number τ = τ(f). Then map ρτ (x) := x + τ (mod 1) is a topological factor6 of
f via continuous orientation-preserving map h : S1 → S1.

Proof. Let F be a strictly monotone lift of degree one of the map f (such a lift exists due to
Lemma 2). Consider for an arbitrary x ∈ R the set

B = B(x) := {Fn(x) + m : n, m ∈ Z}
and define the map

H : B → R such that Fn(x) + m 7→ nτ + m

where τ = τ(F ). Then by Lemma 5 the map H is monotone (moreover, it is a map of degree one).
Note also that due to irrationality of τ the set H(B) is dense in R. So, if we use the notation Rτ

for the map Rτ : x 7→ x + τ , then H ◦ F = Rτ ◦H since

H ◦ F (Fn(n) + m) = H(Fn+1(x) + m) = (n + 1)τ + m

and
Rτ ◦H(Fn(x) + m) = Rτ (nτ + m) = (n + 1)τ + m.

Prove now that H has a continuous extension to the closure B̄ of B. Indeed, if y ∈ B̄ then there
exists a sequence {yn} ⊂ B such that y = limn→∞ yn. To define by continuity H at the point y
we should set H(y) := limn→∞H(yn). To show that limn→∞H(yn) exists and does not depend on
the choice of the sequence approximating y observe first that the left and right limits exist and are
independent of the sequence since H is monotone. At last, note that the left and right limits will
coincide as in the opposite case the set R \H(B) contains an interval. So, we have proved that H
has a continuous extension to the closure B̄ of B.

Now, H can easily be extended to R. Since H : B̄ → R is monotone and surjective (since H
is monotone and continuous on B, B̄ is closed, and H(B) is dense in R) there is no choice in
defining H on the intervals complementary to B̄ as to set H = const on those intervals, choosing
the constant value equal to the values at endpoints. This defines the map H : R → R satisfying
H ◦ F = Rτ ◦H which is of degree one since for y = Fn(x) + m ∈ B we have

H(y + 1) = H(Fn(x) + m + 1) = nτ + m + 1 = H(y) + 1

and this property persists under continuous extension.
Now, from H ◦ F = Rτ ◦ H it follows that h ◦ f = ρτ ◦ h with h(x) = H(x) (mod 1) and

ρτ (x) = Rτ (x) (mod 1) ≡ x + τ (mod 1). ut

Corollary 2. Let f : S1 → S1 be an orientation-preserving map with irrational rotation number
and let I ⊂ S1 be a closed interval with endpoints fm(x) and fn(x) where m 6= n are positive
integers. Then for any y ∈ S1 there is a positive integer k such that fk(y) ∈ I.7

Proof. The conjugating map h constructed in the proof of Theorem 5 maps the points fm(x)
and fn(x) to the points ϕ1 = mτ (mod 1) and ϕ2 = nτ (mod 1) respectively. Since τ is irrational
and m 6= n then ϕ1 6= ϕ2. Then, again by irrationality of τ , for any y ∈ S1 there exists a positive
integer k such that h(fk(y)) = h(y) + kτ (mod 1) ∈ [ϕ1, ϕ2]. From this, since h is monotone and
continuous, we get that fk(y) ∈ h−1([ϕ1, ϕ2]) = I. ut

Corollary 3. Let f : S1 → S1 be an orientation-preserving map with irrational rotation number.
Then the ω-limit set8 ω(x) is independent of x.
6 Remind, that a map g : Y → Y is a topological factor of the map f : X → X if there exists a surjective continuous

map h : X → Y such that h ◦ f = g ◦ h.
7 There are exactly two intervals in S1 with endpoints fm(x) and fn(x); the corollary is valid for either case.
8 The ω-limit set for a point x is defined as the set of all limiting points of the sequence {fn(x)}∞n=1.
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Proof. We need to show that ω(x) = ω(y) for x, y ∈ S1. Let z ∈ ω(x). Then there is a sequence
mn > 0 such that fmn(x) → z. By Corollary 2 for y ∈ S1 there exist kn > 0 such that fkn(y) ∈
[fmn(x), fmn+1(x)]. Thus limn→∞ fkn(y) = limn→∞ fmn(x) = z. Therefore ω(y) ⊆ ω(x) for all
, y ∈ S1 and by symmetry ω(y) = ω(x) for all x, y ∈ S1. ut

Clearly, any ω-limit set is closed. In the case when f is a circle homeomorphism the set ω = ω(x)
is also invariant with respect to f , i.e., f(ω) = ω, while for an orientation-preserving circle map we
can not even state that f(ω) ⊆ ω.

6. BI-INFINITE TRAJECTORIES

One of the most important features of circle homeomorphisms is that for any x ∈ S1 there exists
a bi-infinite trajectory {xn}∞n=−∞ of the corresponding map f satisfying x0 = x, i.e.,

xn+1 = f(xn), −∞ < n < ∞, x0 = x. (23)

Clearly, orientation-preserving circle maps generally do not possess the above feature as for them
the image f(S1) may be a proper part of S1 and so there may exist points with no preimages at
all. Nevertheless, as is stated by Theorem 6 below in under some conditions the set ω∞(f) of all
points x ∈ S1 for which there exists a bi-infinite trajectory {xn}∞n=−∞ hitting x at zero time (see
(23)) is not empty.

Theorem 6. Let f : S1 → S1 be an orientation-preserving map with irrational rotation number
τ(f). Then ω∞(f) 6= ∅.

To prove Theorem 6 we need two auxiliary statements. First we shall prove that Theorem 6 is
valid under supposition that the map f is semi-continuous (from the left or from the right). Then
we shall prove that for semi-continuous maps the set ω∞ in not only non-empty; the cardinality
of this set is continuum. From this we shall deduce that analogous properties are valid for general
maps satisfying conditions of Theorem 6.

Lemma 6. Let f : S1 → S1 be an orientation-preserving semi-continuous from the left (from
the right) map with irrational rotation number τ = τ(f), and x ∈ S1. Then any limiting point
of a monotone subsequence9 fn0(x) < fn1(x) < . . . < fnk(x) . . . belongs to the set ω∞(f) and so
ω∞(f) 6= ∅.

Proof. Given an x ∈ S1, prove first that there exists at least one bounded increasing sequence of
the form {fnk(x)}. Fix some positive integers m,n such that 0 ≤ fn(x) < fm(x) < 1. By Corollary 2
there is a number n0 such that fn(x) ≤ fn0(x) ≤ fm(x) < 1. Then, again by Corollary 2 there is a
number n1 > n0 such that fn0(x) ≤ fn1(x) ≤ fm(x) < 1, etc. Hence there is a sequence of positive
integers {nk} such that

0 ≤ fn0(x) ≤ fn1(x) ≤ . . . ≤ fm(x) < 0. (24)

Notice, that all the inequalities in (24) are, in fact, strict since due to irrationality of τ(f) the map
f has no periodic points.

So, the existence of bounded increasing sequences {fnk(x)} is proved. Let {fnk(x)} be one of such
sequences, then denote z0 = limk→∞ fnk(x). Show that z0 ∈ ω∞(f) and thus ω∞(f) 6= ∅. Consider
the sequence {fnk−1(x)}. Since this is a sequence from S1 then it is compact and without loss in
generality it may be treated as converging, i.e., there exists z1 ∈ S1 such that fnk−1(x) → z1 as k →
∞. But in view of local monotonicity of the map f (see Lemma 2) the sequence {fnk−1(x)} should
9 Here to use the monotonicity arguments we identify S1 with [0, 1).
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be non-decreasing since the sequence {fnk(x)} is non-decreasing by definition. Then fnk−1(x) ≤ z1

and
f(z1) = lim

k→∞
f(f bk(x)) ≡ lim

k→∞
fnk(x) = z0

where the first limit is valid due to supposition that f(x) is semi-continuous from the left. So,
f(z1) = z0. Analogously, there exists z2 ∈ S1 such that f(z2) = z1, etc.

From the above reasoning it follows the existence of sequence {zk} such that f(zk+1) = zk,
k = 0, 1, . . ., which means that z0 ∈ ω∞(f) and thus ω∞(f) 6= ∅. ut

Clearly, by definition f(ω∞) = ω∞. From the proof of Lemma 6 it is also seen that ω∞(f) = ω(f)
for the semi-continuous from the left of from the right map f with irrational rotation number.

Lemma 7. Let f satisfy conditions of Lemma 6. Then for any x ∈ S1 the cardinality of the set
of limiting points of all growing sequences fn0(x) < fn1(x) < . . . < fnk(x) . . . is continuum. So the
cardinality of ω∞(f) is also continuum.

Proof. Given an x ∈ S1 fix positive integers n1, n2, n3, n4 such that

0 < fn1(x) < fn2(x) < fn3(x) < fn4(x) < 1;

such integers exist by Lemma 5 since, by supposition, τ(f) is irrational and so all the points fk(x),
k = 0, 1, . . ., are distinctive. Define intervals of “zero level”

∆0 = [fn1(x), fn2(x)], ∆1 = [fn3(x), fn4(x)].

Then choose inside interval ∆0 four points fn01(x), fn02(x), fn03(x), fn04(x) satisfying

fn1(x) < fn01(x) < fn02(x) < fn03(x) < fn04(x) < fn1(x)

and define intervals of the “first level”

∆00 = [fn01(x), fn02(x)] ⊂ ∆0, ∆01 = [fn03(x), fn04(x)] ⊂ ∆0.

Analogously, we can choose inside interval ∆1 four points fn11(x), fn12(x), fn13(x) and fn14(x)
satisfying

fn3(x) < fn11(x) < fn12(x) < fn13(x) < fn14(x) < fn4(x)

and define two more intervals of the “first level”

∆10 = [fn11(x), fn12(x)] ⊂ ∆1, ∆11 = [fn13(x), fn14(x)] ⊂ ∆1.

The procedure of construction of the ∆-intervals can be continued by induction. Provided that
we have got already 2n+1 intervals of the 2nth level, we can choose in each of such intervals 2
new intervals with endpoints from the set {fk(x)}∞k=1 in such a way that the endpoints of all the
∆-intervals (old and newborn) would be distinctive.

So, such a procedure results in construction of a set of intervals with distinctive endpoints taken
from the set {fk(x)}∞k=1, subdivided in “levels”. On the highest, zero level there are two such
intervals. On the n-th level there are 2n+1 intervals, and each of them contains exactly 2 intervals
from the next (n + 1)-th level.

As is easy to see this procedure resembles the construction of a Cantor set. The only difference
is that, due to the fact that endpoints of our intervals are distinctive, the intersection of any
infinite filtered sequence of such intervals10 is non-empty and has no common points with another
10 The sequence of intervals {∆n} is called filtered if ∆0 ⊇ ∆1 ⊇ . . . ⊇ ∆n ⊇ . . ..
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such interval determined by a different filtered sequence of intervals. Hence, the unity of all the
intersections of all the filtered sequences from our set of intervals has cardinality of all the binary
sequences which is continuum.

Note now, that for any filtered sequence of intervals {∆k} from our set of intervals their left end-
points increase and have the form fnk(x). So, each filtered sequence of intervals uniquely determines
the point

z = lim
k→∞

fnk(x), fnk(x) < fnk+1(x) < z, k = 1, 2, . . . , (25)

and cardinality of different points defined in such a manner is continuum.
At last, by Lemma 6 any point defined by (25) belongs to ω∞(f), so the cardinality of ω∞(f) is

also continuum. ut
Proof of Theorem 6. Define an auxiliary map

f̃(x) := lim
y→x,y<x

f(x).

Then f̃(x) is a semi-continuous from the left orientation-preserving circle map. Since f(x) and f̃(x)
may differ only at points of discontinuity of f(s) while f(x) has only countably many points of
discontinuity then the set

Df := {x ∈ S1 : f(x) 6= f̃(x)}

is finite or countable. Therefore the set

D∞
f : {x ∈ S1 : fn(x) ∈ Df for some integern ≥ 0}

is also finite or countable due to injectivity of the map f . Hence the set S1 \D∞
f is not empty.

Choose an x ∈ S1 \D∞
f . By definition of the set S1 \D∞

f all the points fn(x), n = 0, 1, . . ., are
points of continuity of the map f(x) and therefore

fn(x) = f̃n(x), n = 0, 1, . . . . (26)

By Lemmas 6 and 7 the cardinality of the set ω∞(f̃) is continuum. Moreover, by Lemma 7 the set
ωf̃ contains continuum of points which are limits from the left of increasing subsequences of the
form f̃nk(x). Since the set D∞

f is countable, then there exists an increasing subsequence f̃nk(x)
converging to a point z 6∈ D∞

f . In this case by Lemma 6 z ∈ ω∞(f̃) but since z 6∈ D∞
f then in fact

z ∈ ω∞(f). So, ω∞(f) 6= ∅. ut

7. SET-VALUED CIRCLE MAPS

Recall basic facts of the theory of set-valued orientation-preserving discontinuous circle maps,
following primarily to the work [3]. Point out that the basic definitions and constructions developed
in the previous Sections for single-valued circle maps can be applied without changes to set-valued
circle maps. Nevertheless, to avoid misunderstanding let us present necessary definitions and facts.

Let f : [0, 1) → [0, 1) be some, in general, discontinuous, set-valued function. The function
F : R → R is called the lift of f if it satisfies conditions

F (x + 1) ≡ F (x) + 1, (27)

and
f(x) = F (x) (mod 1) x ∈ [0, 1). (28)

Each set-valued circle map has a lift, and conversely, each map F of the straight line in itself
satisfying (27) is a lift of the circle map f(·) defined by the equality (28).
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The set-valued map f : [0, 1) → [0, 1), treated as a map of the circle S ≡ R/Z in itself, will
be called orientation-preserving if it has a strictly increasing lift. The orientation-preserving map
f : [0, 1) → [0, 1) will be called closed or connectedly closed if it has a strictly increasing lift with
the closed graph, or the graph of some of its strictly increasing lift is a connected and closed set,
respectively.

To illustrate notions introduced above, associate with the strictly increasing lift F of the map
f the auxiliary maps

F+(x) = lim
x̄↓x

F (x̄), F−(x) = lim
x̄↑x

F (x̄),

where notations x̄ ↓ x and x̄ ↑ x are used to denote convergence of the variable x̄ to x strictly from
above or from below, correspondingly. Define also the maps

F∗(x) = {F−(x), F+(x)} , Fc(x) = [F−(x), F+(x)] .

Directly from the definitions of the maps F+(x), F−(x), F∗(x) and Fc(x) it follows that all these
maps are strictly increasing. The maps F+(x) and F−(x) are single-valued, and the map F+(x) is
continuous from the right at each point, while the map F−(x) is continuous from the left at each
point. The maps F∗(x) and Fc(x) are, in general, set-valued and their values coincide with the
values of the map F (x) at the points, in which the map F (x) is single-valued and continuous. In
all other points the values of F∗(x) consist of exactly two points while the values of Fc(x) consist
of closed intervals. Besides, the graphs of the both maps F∗(x) and Fc(x) are closed. It should be
noted also that

F+(x), F−(x) ∈ F∗(x) ⊆ Fc(x) ∀x.

In addition, if the graph of the map F (x) is closed then F∗(x) ⊆ F (x) ⊆ Fc(x). Therefore, it
is natural to call the map F∗(x) the minimal closure of the map F (x) while the map Fc(x) can
be called the connected or maximal closure of the map F (x). Respectively, the map F (x) will be
called minimally closed if F (·) = F∗(·), and it will be called connectedly or maximally closed if
F (·) = Fc(·).

Theorem 7 (see [3]). Let f : [0, 1) → [0, 1) be an orientation-preserving circle map with a con-
nectedly closed lift F . Let {xn} be a trajectory of the map F , i.e.

xn+1 ∈ F (xn), n = 0, 1, . . . . (29)

Then the following assertions are valid:

(i) there is a number τ , not depending on the initial value x0, for which the estimates hold∣∣∣xn

n
− τ

∣∣∣ ≤ 1
n

, n = 1, 2, . . . ,

and hence
τ = lim

n→∞

xn

n
;

(ii) if the number τ is rational of the form τ = p/q with coprime p and q then the map f(·) has a
periodic point of period q, and any trajectory (29) converges to a periodic trajectory of period q
as n →∞;

(iii) if the number τ is irrational then all the trajectories (29) have the same limiting set which is
either coincide with the whole circle or is the Cantor set;
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(iv) the number τ depends continuously on the graph of the map F in the Hausdorff metric11.

According to this Theorem the number τ is uniquely determined by the map F and does not
depend neither on the choice of the initial point x0 of the trajectory {xn} nor on arbitrariness in
the construction of the trajectory {xn} by formula (29). So, it is reasonable to denote the number τ
by τ(F ); this number is called the rotation number of the lift F . The value τ(F ) is often called also
the rotation number of the circle map f . One should only bear in mind that the rotation number
for a circle map is defined modulo integer additives since lifts of the circle map are also defined
modulo integer additives. Therefore, sometimes the rotation number of a circle map is defined as
τ(F ) (mod 1).

Remark 2. An orientation preserving circle map was defined above as such a circle map which
has a strictly increasing lift. Theorem 7 will be no longer valid if to omit the requirement that the
corresponding lift increases strictly.

Proof. Validity of the remark follows from the fact that a circle map with a non-decreasing lift
may have simultaneously periodic points of different coprime periods as is plotted in Fig. 2 and
3. ut

1

10

f x( )

x x0 2=x1

1

10

f x( )

x x0 3=x1 x2

Figure 2. Periodic point of period 2 Figure 3. Periodic point of period 3

The next Remark shows that in Theorem 7 the requirement of the connectedness of the graph
of the lift F is not essential. What is important is the closeness of the graph.

Remark 3. All the statements of Theorem 7 continue to be valid for any circle map possessing
a strictly increasing closed lift.

Proof. Let the circle map f(x) has a strictly increasing closed lift F (x). Consider the connected
closure Fc(x) of the map F (x). Then from the inclusions F (x) ⊆ Fc(x) valid for any x ∈ R it
11 The statement means that for any orientation-preserving circle map f̂ with a connectedly closed lift F̂ the values

of τ̂ tend to τ when the graph of the map F̂ tends to the graph of the map F by the Hausdorff metric. Point out
that due to condition (27) the Hausdorff distance between the maps F and F̂ is defined correctly in spite of the
fact that the graphs of these maps are not bounded.
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follows that each trajectory {xn} of the map F (x) is also a trajectory of the map Fc(x). Hence,
the rotation number τ(F ) of the map F is correctly defined and coincides with τ(Fc), and besides,
the limiting set of the trajectory {xn} does not depend on the choice of the trajectory in the case
when τ(F ) is irrational.

If the number τ(F ) is rational then the trajectory {xn} of the map F , being at the same time
a trajectory of the map Fc, by assertion (iii) of Theorem 7 converges to some periodic trajectory
of the map Fc. But in view of closeness of the graph of the map F the corresponding limiting
trajectory will be a trajectory of the map F , from which assertion (iii) of Theorem 7 for the map
F follows.

At last, assertion (iv) of Theorem 7 for the map F follows from the already established identity
τ(F ) ≡ τ(Fc) and from the remark that for any two strictly increasing maps F and F̂ with the
closed graphs the Hausdorff distance between their graphs coincide with the Hausdorff distance
between the graphs of the maps Fc and F̂c. ut

8. COMPUTATION OF THE ROTATION NUMBER

One of weak points in the definition of the rotation number τ(f) for the circle map f(·) is that
one need perform intermediate steps (such as to construct the lift F (·) and to build the trajectory
{xn} of the map F (·)) to calculate the limit

τ(f) = lim
n→∞

xn

n
,

where xn ∈ Fn(x0). It is desirable to find a method to calculate the rotation number τ(f) directly
in terms of the map f and its trajectories. To do it, we first investigate in more details properties
of the orientation-preserving circle maps (cf. [6, Lemma 1]).

Lemma 8. Let f be a close orientation-preserving circle map and let F be its standard lift. Then
for any x ∈ [0, 1) and any pair of elements fx ∈ f(x), Fx ∈ F (x) satisfying fx = Fx (mod 1) the
following relation is valid:

Fx = fx + ν(fx), (30)

where

ν(x) =
{

1 if 0 ≤ x < ω,
0 if ω ≤ x < 1,

(31)

with ω = min{y : y ∈ f(0)} (see Fig. 1)12.
Conversely, if for a pair of elements fx ∈ f(x) and Fx relation (30) holds then Fx ∈ F (x).

Proof. Fix a point x ∈ [0, 1) and choose a pair of elements fx ∈ f(x) and Fx ∈ F (x) satisfying
the relation fx = Fx (mod 1). Since, by the lemma’s conditions, F (·) ia a standard lift of the map
f(·) then F (0) = f(0) ∈ [0, 1). Then from the fact that the map F (·) is strictly increasing we obtain
the estimates

0 ≤ f(0) = F (0) ≤ Fx < F (1) = F (0) + 1 = f(0) + 1 < 2, x ∈ [0, 1),

i.e. Fx ∈ [0, 2).
If Fx ∈ [0, 1) then the equality fx = Fx (mod 1) implies fx = Fx, and by monotony of the

function F (·)
ω = min{y : y ∈ f(0)} = min{y : y ∈ F (0)} ≤ Fx = fx < 1.

12 Remark that the function ν(x) is identically equal to zero if ω = 0. In this case F (x) ≡ f(x) on the interval [0, 1),
and so, the function f(x) strictly increases on [0, 1).
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Hence, in this case ν(fx) = 0 from which we obtain that Fx = fx + ν(fx).
But if Fx ∈ [1, 2) then the equality fx = Fx (mod 1) implies fx = Fx − 1. In this case by

monotony of the function F (·) the following relations take place

0 ≤ fx = Fx − 1 < min{y : y ∈ F (1)} − 1 = min{y : y ∈ F (0) + 1} − 1 =
= min{y : y ∈ F (0)} = min{y : y ∈ f(0)} = ω.

Hence ν(fx) = 1 which again implies Fx = fx + ν(fx). So, in one direction Lemma 8 is proved.
Now, let fx ∈ f(x) and Fx be elements for which relation (30) is fulfilled. By the definition of the

lift of a circle map, the sets f(x) and F (x) satisfy the relation f(x) = F (x) (mod 1). Consequently,
the set F (x) contains such an element F∗ that fx = F∗ (mod 1). But then, due to the already
proven first part of Lemma, the relation F∗ = fx + ν(fx) should be valid. But by supposition, for
the elements fx and Fx the analogous relation (30) is also true, i.e. Fx = fx + ν(fx), from which
we immediately obtain Fx = F∗ ∈ F (x). Lemma 8 is completely proved. ut

At last, we are able to present the definition of the rotation number of the circle map f(·) directly
in terms of the map f(·) (to be precise, the definition of the rotation number of the standard lift
F (·) of the map f(·)).

Theorem 8. Let f : [0, 1) → [0, 1) be an orientation-preserving circle map with the closed stan-
dard lift F . Let {zn} be a trajectory of the map f , i.e.

zn+1 ∈ f(zn), n = 0, 1, . . . .

Then the uniform estimates hold∣∣∣∣∑n
i=1 ν(zi)

n
− τ(F )

∣∣∣∣ ≤ 2
n

, n = 1, 2, . . . , (32)

and so,

τ(F ) = lim
n→∞

∑n
i=1 ν(zi)

n
.

Proof. Define the sequence {xn}∞n=0 by setting x0 = z0 and

xn = zn +
n∑

i=1

ν(zi), n = 1, 2, . . . .

Prove by induction that {xn} satisfies the inclusions

xn+1 ∈ F (xn), n = 0, 1, . . . , (33)

and so, it is a trajectory of the map F .
Indeed, by the definition, x1 = z1 + ν(z1), where z1 ∈ f(z0). Therefore, by Lemma 8 x1 ∈

F (z0) = F (x0), and the statement of Theorem 8 is true for n = 0.
Perform the step of induction. Suppose that the statement of Theorem 8 is valid for n = k ≥ 0

and show that this imply its validity for n = k + 1. By the definition of the element xk+1,

xk+1 = zk+1 +
k+1∑
i=1

ν(zi)
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or, what is the same,

xk+1 −
k∑

i=1

ν(zi) = zk+1 + ν(zk+1).

Since here, by the definition of the trajectory {zn}, the inclusion zk+1 ∈ f(zk) with zk ∈ [0, 1)
holds, then by Lemma 8 zk+1 + ν(zk+1) ∈ F (zk). Hence,

xk+1 −
k∑

i=1

ν(zi) ∈ F (zk)

or, what is the same,

xk+1 ∈ F (zk) +
k∑

i=1

ν(zi) = F (zk +
k∑

i=1

ν(zi)).

Here, by the supposition of induction, the argument of the function F in the right-hand part
coincides with xk which implies xk+1 ∈ F (xk).

So, the step of induction is justified and inclusions (33) are proved. To complete the proof of
Theorem 8 it remains to note only that by Theorem 7 and Remark 3 for the trajectory {xn} the
estimates hold ∣∣∣xn

n
− τ(F )

∣∣∣ ≤ 1
n

, n = 1, 2, . . . ,

while by the definition of trajectory {xn} it is valid the equality

xn

n
=

zn

n
+

∑n
i=1 ν(zi)

n
,

where zn ∈ [0, 1). Estimates (32) now directly follow from the latter relations. Theorem 8 is proved.
ut
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