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Abstract�It was shown recently that under self-similar traffic the delay distribution function can

decrease very slowly, so in order to guaranty the Quality of Service (QoS) in communication networks,

burst size is usually bounded by some value using, for example, leaky-bucket mechanism.

In this paper we consider a discrete-time queue with M types of independent input processes. Each

input process is the aggregation of sessions (bursts) arrived by a Poisson process. Asymptotic delay

distribution at network node driven by self-similar traffic and its effects on burst size bound have been

analysed. It is also found the critical value of the burst size at which delays start to increase considerably.

1. INTRODUCTION

Recent network traffic studies have shown that network arrival processes are more adequately modelled

using self-similar processes. Self-similar models, in fact, are able to capture the burstiness and the long-

range dependence characteristics, which means that significant correlations are present in arbitrarily large

time scales. The presence of long-range dependence in traffic processes has a strong impact on queueing

performance and buffer engineering, for example it completely alters the tail of queue waiting times.

Traffic network quality of service can be estimated evaluating packets delay distribution and packets loss

probability. Typically packet delay or loss arise at network node, so the traffic performance analysis of a

network can be reduced to the investigation of a node performance. A network node can be represented as

a G/D/1 queueing system so a crucial matter is to find an adequate distribution for the input process G of

this queueing model.

Two basic approaches have been developed in the investigation of packet loss phenomenon and overflow

probability, i.e. the probability of exceeding a given level in a finite buffer queue: the so-called many sources

asymptotics and the large buffer asymptotics. The many sources asymptotics, investigated by many authors

([1], [4], [8], [15]) is valid when a large number of sources access a buffer which is drained by a very high

capacity server. The large buffer asymptotics approach, instead, is used when there are a few sources or some

sources which utilize a significant amount of server capacity. It has been studied under various hypotheses

on the source characteristics, see [5] for the case of light-tailed sources.

Recently empirical studies by Willinger et al ([7], [14]) have shown the presence of sources with heavy-

tailed characteristics. It means that sources transmit for long periods of time when they come on and the

activity periods have heavy-tailed characteristics in time, i.e. the complementary distribution of the activity

period has a decay which obeys a power law rather than an exponential one.

The large buffer asymptotics for the case of heavy-tailed source activity periods has been studied under

various assumptions on the input streams. These range from queues with fractional Brownian motion inputs

([12]), general Gaussian processes with negative drifts ([3]), ON-OFF inputs with long-tailed ON periods

([6]) and M/G/∞ type of inputs with long-tailed G distributions ([10], [11], [13]). An excellent account

can be found in the survey [1].
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In this paper we will focus on the model proposed and studied in [9]. In this model the input process

for a network node is the sum of sessions (bursts) arrived by a Poisson process but with length distributed

according to a power law. There are many type of sources which can differ by the length distribution

exponent, the arrival intensity, the rate in active period. Since the sum of different types of sources has been

considered, the model is sufficiently general and give us the possibility to analyze how sources parameters

can change server performance characteristics. In the paper [9] the influence of the rate of active source

period and the length distribution exponent on system performance has been investigated. In this paper we

will find how the value of the maximum length of active period (burst length) can change performance

characteristics of the server.

The organization of the paper is as follows: in Section 2 we give notations, formulation of the model, and

asymptotic definition. Section 3 presents the main result and its proof in brief form. In Section 4 we consider

the simple homogeneous case and we give interpretation of the developed results.

2. TRAFFIC MATHEMATICAL MODEL

We consider a discrete-time queue with M types of independent input processes Yt,i. Each input process

Yt,i is the aggregation of sessions (bursts) arrived by a Poisson process with intensity λi. Sessions arrive

independently of each other and a session of type i transmits at the rate ri > 0 for a duration of time τi,

called the session length or duration. We assume that the session lengths have a long-tailed distribution, i.e.

for large values of x, the complementary distribution of τi is given by

Pr{τi > x} ∼


αix

−1−βi , if x < B,

0, if x ≥ B,

where αi,βi > 0 are some constants and the maximum burst size B will be defined later. If βi ∈ (0, 1] (the
sessions are referred to as heavy-tailed) andB = ∞ the input process Yt,i will be asymptotically self-similar.

Throughout the paper the notation A(x) ∼ B(x) means that

lim
x→∞

A(x)
B(x)

= 1.

It is assumed that the buffer is drained at a rate of C units per time. The sessions and their lengths are

assumed to be mutually independent.

Let θt,i denote the number of sessions of type i which arrive into the system at time t. We assume that

the r.v's θt,i are i.i.d. We have

Pr{θt,i = n} =
λi

n

n!
e−λi , λi > 0.

The input process of the queue will be equal to

Yt =
M∑
i=1

Yt,i

and each component Yt,i can be expressed as

Yt,i =
−∞∑
n=t

θn,i∑
j=1

riI(τn,i,j ≥ t− n)

where I(A) denotes the indicator function of the event A.
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We denote the average system input load by

ρ = E[Yt] =
M∑
i=1

λiriE[τt,i,1]

and we will assume that ρ < C .

Denote by Wt the stationary buffer occupancy (the workload) assuming an infinite buffer. Wt is given

by the following formula

Wt = max(Wt−1 + Yt − C, 0).

In this article we are interested in studying the behavior of the tail probability Pr{Wt > z} for large z i.e.

as z → ∞, with maximum burst size B ∼ bz, where b > 0 is some constant. More precisely our aim is to

find the probability for the system to reach overload period. which can be defined as a period when packets

delay is greater than z/C. Taking into account that for large z this probability is sufficiently small, it can be

defined as

Fov = Pr{Wt > z, Wi ≤ z, t− δz < i < t}

where δ > 0 is some sufficiently small constant.

To state the main results we need to define the following random variables:

- J denotes a set (j1, j2, · · · , jM ) of M non negative integers.

- κJ =
∑M

i=1 βiji corresponds to the decay exponent associated to the set J .

- RJ =
∑M

i=1 riji is the rate corresponding to the set J of sessions.

- J0 = arg minJ{κJ : RJ − (C − ρ) > 1
b}.

3. EVALUATION OF OVERLOAD PROBABILITY BEHAVIOUR

Now we are ready to formulate the main result.

Theorem 1. For large z, the system overload probability can be found as

Fov ∼ z−κJ0
+1

M∏
i=1

P
j
(0)
i

i /j
(0)
i (1)

where

Pi =
λiαi

βi

(
(RJ0 − (C − ρ))−βi − b−βi

)
.

In order to prove this result, first, for b > ε > 0 we define the processes Y l
t and Y h

t as follows. The

process Y l
t corresponds to the number of active sessions which have session lengths at most εz. This is given

by:

Y l
t =

t−εz∑
n=t

M∑
i=1

θn,i∑
j=1

riI(εz ≥ τn,i,j ≥ t− n). (2)

The superscript l denotes that these sessions are �light-tailed�.

The process Y h
t corresponds to the number of active sessions which have session lengths greater than εz.

This is given by:

Y h
t =

−∞∑
n=t

M∑
i=1

θn,i∑
j=1

riI(τn,i,j ≥ t− n, τn,i,j > εz). (3)
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The superscript h indicates that the sessions are �long-tailed�.

We can see that the processes Y l
t and Y h

t are mutually independent and Yt = Y l
t + Y h

t . Since we put

ε < b, the process Y l
t will have the same properties as in the unbounded case when B = ∞.

We start our analysis separately for the processes Y l
t and Y h

t and then we combine them to get the

final result. For the process Y l
t we can use directly two lemmas from the paper [9]. These Lemmas can be

formulated in the following form. Let

X l
k =

t∑
n=t−k

Y l
n.

Lemma 1. For any given δ2 > 0, c1 > 0, 0 < ε < min
{

δ2
ρ , βmin

c1
, b

}
and sufficiently large z

Pr{sup
k≥0

{X1
k − ρk} > δ2z} ≤ z1−c1δ̃2

where δ̃2 = δ2 − (ρ + δ1)ε, ρ = E[Yt].

Lemma 2. For any given δ1 > 0, δ2 > 0, and sufficiently small b > ε > 0, as z →∞

Pr{ inf
k≥0

{X1
k − (ρ− δ1)k} < −δ2z} ≤ e−O(z).

First we need to find asymptotics for the probability Pr{Wt > z}.
To prove upper bound, we consider the process Y l

t as the input to a queue with service rate ρ and the

process Y h
t as the input to another queue with service rate C − ρ. Then both queues are stable and let W l

t

denote the stationary workload for the first queue and W h
t denote the stationary workload for the second

queue. If we define X(−t, k) =
∑k

j=−t Yj , and X l(−t, k) =
∑k

j=−t Y l
j , we get

Wt = sup
k≥0

{X(t− k, t)− Ck},

W l
t = sup

k≥0
{X l(t− k, t)− ρk},

W h
t = sup

k≥0
{Xh(t− k, t)− (C − ρ)t}.

It is easy to see that

Pr{Wt > z} ≤ Pr{W l
0 > δz}+ Pr{W h

t > (1− δ)z}.

Now from Lemma 2 we get

Pr{Wt > z} ≤ Pr{W h
t > (1− δ)z}(1 + o(z)).

In this way, the upper bound for the system W h
t is established.

Now, to get lower bound, with similar notation as above, we have

sup
k≥0

{X(t− k, t)− Ck} ≥ sup
k≥0

{Xh(t− k, t)− (C − ρ)k}+ inf
k≥0

{X l(t− k, t)− ρk}

and again, as z →∞ and using Lemma 1 , we get

Pr{W h
t > z}(1 + o(z)) ≤ Pr{Wt > z}

establishing that the probability Pr{Wt > z} is determined by the system W h
t .
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To analyze W h
t we will also use lower and upper bounds arguments. To compute lower bound we just

need to find any configuration of sessions which arise system overflow: W h
t > z. To construct upper bound

we need to find what kind of busy periods will dominate. Let us start with lower bound. Define by AJ,t the

event that at time t there are ji active sessions of type i. Using Poisson sessions arrivals, we have

Pr{AJ,t} ∼ const. z−κJ

or more exactly

Pr{AJ,t} ∼ z−κJ

M∏
i=1

(PJ,i)li

ji!

where

PJ,i =
λiαi

βi

(
(RJ − (C − ρ))−βi − b−βi

)
.

Since we compute Pr{AJ,t}, the probability of the busy period with a given configuration of J0 active

sessions which are simultaneously active during the time interval at least equal to

l0 = (RJ0 − (C − ρ)) z

can be computed.

To get upper bound, first we find what the typical busy period is. Recall two definitions:

Definition 1. We define a congestion period in a queue as the duration within a busy period when the

net rate is positive, i.e., the total input rate exceeds the server rate. Conversely we define a post-congestion

period as the duration within a busy period when the net rate is negative, i.e., total input rate is less than the

server rate.

Definition 2. We define an Isolated Typical Busy Period (ITBP) as a busy period during which there is

one congestion period, one post-congestion period and that the congestion period is caused by exactly J0

h−type sources arriving to begin the busy period.

Following the proof of the Lemma 2 from [9] we can find that typical busy period at which overflow

occur will be isolated and will not contain any sessions except the sessions from configuration J0 and

Pr{W h
t > z, t ∈ ITBP} = O(z−κJ0 ),

Pr{W h
t > z, t /∈ ITBP} = o(z−κJ0 ).

Combing these results with lower bound and taking into account above arguments concerning the

dominating of W h
t system in overflow probability, we get equation (1).

4. HOMOGENEOUS CASE

In the simple case, when we have only one class of sources M = 1, easy calculations can be made to

understand how sessions finite length can effect overflow probability. In the homogeneous case we have

ri = r, βi = β, J0 = {j0}, RJ0 = rj0, κJ0 = βj0. Thus

j0 = b
(C − ρ) + 1

b

r
c+ 1

and

Fov = const. z−βj0 .
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As we can see, in sense of overflow probability, the critical value of burst size bz is about z
C−ρ : critical

delay value divided by C − ρ. It means that increasing burst size more than the value bz, critical delay
probability or overflow probability does not change significantly. In this case only the session average rate

r takes an important role. Meanwhile, bounding the burst size to a value less than bz we can significantly

decrease overflow probability or probability to exceed critical delay. Roughly speaking, the absolute value

of the delay distribution exponent will increase two times if we decrease the maximum burst size two times.

5. CONCLUSIONS

In this paper large buffer asymptotics has been considered in order to investigate the influence of the

traffic burst size limit on the overload probability in a data network node. Limit on burst size means that

the burst length distribution function is cut at some point to zero with appropriate normalization. The results

have been obtained for the so called Poisson/Pareto traffic model, where sessions (bursts) arrive according

to a Poisson process and session lengths are distributed by a power law, which implies that the probability

of long length sessions has a significant value.

Let us discuss briefly the derived results. In the situation of large buffer asymptotics, as it was shown

analytically, typical overload scenario arises due to a certain number of bursts with large length which are

active in the same time period. It means that typical overload is not due to the fluctuation of sources or

bursts number in the system but to bursts length. As a result, overload probability decreases according

to the burst length distribution (by power law), while in the case of overload due to the sources number

fluctuations, overload probability decreases exponentially. If we introduce a limit on the maximum burst

length, overload probability behaviour depends on the maximum accepted delay value. If this limit is bigger

than the maximum accepted delay value, overload probability asymptotically does not change since typical

scenario is still the same. Otherwise, when the limit value is less than the maximum delay value, extra sources

arrivals with larger bursts length are needed to reach overload in the system and in the case of homogeneous

sources overload probability decreases exponentially over the limit on burst size. In this way, maximum

burst size starts to play an important role for overload probability evaluation.

Within the analyzed model, another traffic parameter which plays a critical role is the source peak rate.

Sources peak rate means the rate inside the burst generated by this source. As it was shown previously and

in this paper, overload probability decreases exponentially decreasing the peak rate. In some sense, in the

overload probability evaluation, it is not so important the peak rate or the burst length but the product of the

burst length by the peak rate. Of course, this is true only in the case in which the burst length is less than

the maximum accepted delay value. In a practical sense it means that we can increase the sources peak rate

keeping the burst size (expressed in bits) constant and the overload probability on the node will not increase

if the bursts length (in units of time) is less than the critical value.

We should keep in mind that the presented results are asymptotic. We considered asympotic while buffer

size and burst length go to infinity (the so called large buffer asymptotics). It means that in the case of not

limited values, the derived results can be considered only as some approximations which can be good or

not depending on how the particular system is close to the limited one. For example, overload scenario in a

real system can arise not only due to the long lengths sessions like in asymptotic case, but also to the active

sources number fluctuations.

Next, we should keep in mind, that different models for network traffic can be constructed. For example,

we can consider asymptotics when the sources number in the system goes to infinity. In this case the overload

probability behaviour will be quite different. Overload probability will decrease exponentially over the buffer

size and typical overload scenario is due to the sources number fluctuation. Practically, overload will arise

when the average load will exceed the system service rate. The validity of one or another model depends

strongly on the statistical properties of the particular network traffic.
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