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Abstract—Based on data from a large-scale experiment with human subjects, we conclude that
the logarithm of probability to guess a word in context (unpredictability) depends linearly on
the word length. This result holds both for poetry and prose, even though with prose, the
subjects don’t know the length of the omitted word. We hypothesize that this effect reflects a
tendency of natural language to have an even information rate.

1. INTRODUCTION

In this paper we report a particular result of an experimental study on predictability of words
in context. The experiment’s primary motivation is the study of some aspects of poetry perception,
but the result reported here is, in the author’s view, of a general linguistic interest.

The first study of natural text predictability was performed by the founder of information theory,
C. E. Shannon [1]. (We’ll note that even in his groundbreaking work [2], Shannon briefly touched on
the relationship between literary qualities and redundancy by contrasting highly redundant Basic
English with Joyce’s “Finnegan’s Wake” which “enlarges the vocabulary and is alleged to achieve
a compression of semantic content”.) Shannon presented his subject with random passages from
Jefferson’s biography and had her guess the next letter until the correct guess was recorded. The
number of guesses for each letter was then used to calculate upper and lower bounds for the entropy
of English, which turned out to be between 0.6 and 1.3 bits per character (bpc), much lower than
that of a random mix of the same letters. Shannon’s results also indicated that conditional entropy
decreases as more and more text history becomes known to the subject, up to at least 100 letters.

Several authors repeated Shannon’s experiments with some modifications. Burton and Licklider
[3] used 10 different texts of similar style, and fragment lengths of 1, 2, 4, ..., 128, 1000 characters.
Their conclusion was that, contrary to Shannon, increasing history doesn’t affect measured entropy
when history length exceeds 32 characters.

Fónagy [4] compared predictability of the next letter for three types of text: poetry, newspaper,
and “a conversation of two young girls”. Apparently, his technique involved only one guess per
letter, so entropy estimates could not be calculated (see below), and results are presented in terms
of the rate of correct answers, poetry being much less predictable than both other types.

Kolmogorov reported the results of 0.9–1.4 bpc for Russian texts in his work [5] that laid the
ground of algorithmic complexity theory. Unfortunately, the paper contains no experimental details.

Cover and King [6] modified Shannon’s technique by having their subjects place bets on the next
letter. They showed that the optimal betting policy would be to distribute available capital among
the possible outcomes according to their probability and so if the subjects play in an optimal way
(which is not self-evident though), the letter probabilities could be inferred from their bets. Their
estimate of the entropy of English was calculated at 1.3 bpc. This work also contains an extensive
bibliography.
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Moradi et al [7] first used two different texts (a textbook on digital signal processing and a
novel by Judith Krantz) to confirm Burton and Licklider’s results on the critical history length (32
characters), then added two more texts (“101 Dalmatians” and a federal aviation manual) to study
the dependence of entropy on text type and subject (with somewhat inconclusive results).

A number of works were devoted to estimating entropy of natural language by means of statis-
tical analysis, without using human subjects. One of the first attempts is reported in [8], where 39
English translations of 9 classical Greek texts were used to study entropy dependency on subject
matter, style, and period. A very crude entropy estimate by letter digram frequency was used.
For some of the more recent developments, see [9], [10] and references therein. By the very na-
ture of these methods they can’t utilize meaning (and even syntax) of the text, but by the brute
force of contemporary computers they begin achieving results that come reasonably close to those
demonstrated by human language speakers.

Our experimental setup differs from the previous work in two important aspects. First, we have
subjects guess whole words, and not individual characters. Second, the words to be guessed come
(generally speaking) from the middle of a context, rather than at the end of a fragment. In addition
to filling blanks, we present the subjects with two other task types where authenticity of a presented
word is to be assessed. The reason for this is that while most of the previous studies were eventually
aimed at efficient text compression, we are interested in literary (chiefly, poetic) texts as works of
literature, and not as mere character strings subject to application of compression algorithms1.
Our goal in designing the experiment was to provide researchers in the field of poetics with hard
data to ground some hypotheses that otherwise are unavoidably speculative. Guessing the next
word in sequence is not the best way to treat literary text, because even an ordinary sentence like
this one is not essentially a linear sequence of words or characters, but a complex structure with
word associations running all over the place, both forward and backward. A poem, even more so,
is a structure with strongly coordinated parts, which is not read sequentially, much less written
sequentially. Also, practice shows that even when guessing letter by letter, people almost always
base their next character choice on a tentative word guess. This is why guessing whole words in
context was more appropriate for our purpose.

However, the results we present here, as already mentioned, are not relevant to poetics proper,
so we will not dwell on this further, and refer the interested reader to [11].

2. EXPERIMENTAL SETUP

In their Introduction to the special issue on computational linguistics using large corpora, Church
and Mercer [12] note that “The 1990s have witnessed a resurgence of interest in 1950s-style empirical
and statistical methods of language analysis”. They attribute this empirical renaissance primarily to
the availability of processing power and of massive quantities of data. Of course, these factors favor
statistical analysis of texts as character strings. However, wide availability of computer networks
and interactive Web technologies also made it possible to set up large-scale experiments with human
subjects.

The experiment has the form of an online literary game in Russian2. However, the players are also
fully aware of the research side, have free access to theoretical background and current experimental
results, and can participate in online discussions. The players are presented with text fragments
in which one of the words is replaced with blanks or with a different word. Any sequence of 5 or

1 It should be noted though that efficient compression is important not only per se, but also for cryptographic
applications as pointed out in [10]. In addition, language models developed for the purpose of compression are
successfully used in applications like speech recognition and OCR, allowing to disambiguate difficult cases and
correct errors.

2 http://ygrec.msk.ru
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more Cyrillic letters surrounded by non-letters was considered a “word”. Words are selected from
fragments randomly. There are three different trial types:

type 1: a word is omitted, and is to be guessed.
type 2: a word is highlighted, and the task is to determine whether it is original or replaced.
type 3: two words are displayed, and the subject has to determine which one is the original word.

Incorrect guesses from trials of type 1 are used as replacements in trials of types 2 and 3.
Texts are randomly drawn from a corpus of 3439 fragments of mostly poetic works in a wide range

of styles and periods: from Avantgarde to mass culture and from 18th century to contemporary.
Three prosaic texts are also included (two classic novels, and a contemporary political essay).

As of this writing, the experiment has been running almost continuously for three years. Over
8000 people took part in it and collectively made almost 900,000 guesses, about a third of which is
of type 1. The traditional laboratory experiment could have never achieved this scale. Of course,
the technique has its own drawbacks, which are discussed in detail in [11]. But they are a small
price to pay for statistical relevance, especially if it can’t be achieved in any other way.

3. RESULTS

The specific goal of the experiment is to discover and analyze systematic differences between
different categories of texts from the viewpoint of how easy it is to a) reconstruct an omitted
word, and b) distinguish the original word from a replacement. However here we’ll consider a
particular property of the texts that turns out to be independent of the text type and so probably
characterizes the language itself rather than specific texts. This property is the dependency of word
unpredictability on its length.

We define unpredictability U as the negative binary logarithm of the probability to guess a word,
U = − log2 p1, where p1 is the average rate of correct answers to trials of type 1. For a single word,
this is formally equivalent to Shannon’s definition of entropy, H. However, when multiple words
are taken into account, entropy should be calculated as the average logarithm of probability, and
not as the logarithm of average probability,

H = − 1
N

N∑
i=1

log2 pi
1

U = − log2

1
N

N∑
i=1

pi
1

Indeed, the logarithm of probability to guess a word equals the amount of information in bits
required to determine the word choice. Thus, it is this quantity that is subject to averaging. When
dealing with experimental data, it is customary to use frequencies as estimates of unobservable
probabilities. However, there are always words that were never guessed correctly and have p1 = 0
for which logarithm is undefined (this is why Shannon’s techinque involves repeated guessing of the
same letter until the correct answer is obtained). Formally, if there is one element in the sequence
with zero (very small, in fact) probability of being guessed, then the amount of information of the
whole sequence may be determined solely by this one element.

On the other hand, unpredictability as defined above is not sensitive to the exact probability to
guess such words, but only on how many there are of them. While entropy characterizes the number
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Fig. 1. Unpredictability as a function of word length in characters, all texts

of tries required to guess a randomly selected word, unpredictability characterizes the portion of
words that would be guessed on the first try. They are equal, of course, if all words have the same
entropy.

One way around the problem presented by never-guessed words would be to assign some ar-
bitrary finite entropy to them. We compared unpredictability with entropy calculated under this
approximation with two values of the constant: 10 bits (corresponding roughly to wild guessing
using a frequency dictionary) and 3 bits (the low bound). In both cases, while H is not equal
numerically to U , they turned out to be in an almost monotonic, approximately linear correspon-
dence. This probably means that the fraction of hard-to-guess words co-varies with unpredictability
of the rest of the words. Because of this, we prefer to work in terms of unpredictability, rather than
introducing arbitrary hypotheses to calculate an entropy value of dubious validity.

Unpredictability as a function of word length calculated over all words of the same length across
all texts is plotted in Fig. 1 and Fig. 2 (where word length is measured in characters and syllables
respectively). Confidence intervals on the graphs are calculated based on the standard deviation of
the binomial distribution (since the data comes from a series of independent trials with two possible
outcomes in each: a guess may be correct or incorrect).

In the range from 5 to 14 characters and from 1 to 5 syllables, an excellent linear dependence
is observed. Longer words are rare, so the data for them is significantly less statistically reliable.
We’ll only discuss the linear dependence in the range where it is definitely valid.

4. DISCUSSION

It is very difficult, for the reasons mentioned above, to compare our results with previous studies.
However, there are two points of comparison that can be made. First, we can roughly estimate the
effect of word guessing in context as opposed to guessing the next word in sequence. Recall that
Shannon [1] estimated zeroth-order word entropy for English based on Zipf’s law to be 11.82 bits
per word (bpw). Brown et al [9] used a word trigram model to achieve an entropy estimate of
1.72 bpc, which translates to 7.74 bpw for average word length of 4.5 characters in English. This
means that trigram word probabilities contribute 11.82− 7.74 = 4.08 bpw for prediction of word in
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Fig. 2. Unpredictability as a function of word length in syllables, all texts

sequence. But word in context participates in three trigrams at once: as the last, the middle and
the first word of a trigram. Only the first trigram is available when the model is predicting the
next word, but all three trigrams could be used to fill in an omitted word (this is a hypothetical
experiment which was not actually performed). Of course, they are not statistically independent,
and as a rough estimate we can assume that the last trigram contributes somewhat less information
than the first one, while the middle trigram contributes very little (since all of its words are already
accounted for). In other words, we could expect this model to have about 4 bpw more information
when guessing words in context, which is very significant.

The second point of comparison is provided by [13] (Fig. 13 there), where entropy is plotted
for the n-th letter of each word, versus its position n. Entropy was estimated using a Ziv–Lempel
type algorithm. It is well-known that guessing is least confident at the word boundaries for both
human subjects and computer algorithms, and this chart quantifies the observation: the first letter
has the entropy of 4 bpc, which drops quickly to about 0.6–0.7 bpc for the 5th letter and then stays
surprizingly constant all the way through the 16th character. This chart is practically the same for
the original text and a text with randomly permuted words, which gives a telling evidence of the
current language models’ strengths and weaknesses. For the purposes of this discussion, the data
allows to reconstruct the dependency of word entropy on the word length as h

(w)
n =

∑n
i=1 h

(l)
i , where

h
(w)
n is the entropy of words of length n, and h

(l)
i is the entropy of the i-th letter in a word. This

dependency, valid for the language model in [13], has a steep increase from 1 through 5 characters,
and then an approximately linear growth with a much shallower slope of 0.6–0.7 bpc. This is very
different from our Fig. 1, and even though our data is on unpredictability, rather than entropy, the
difference is probably significant.

In fact, our result may at first glance seem trivial. Indeed, according to a theorem due to
Shannon (Theorem 3 in [2]), for a character sequence emitted by a stationary ergodic source,
almost all subsequences of length n have the same probability exponential in n: Pn = 2−Hn for
large enough length (H is the entropy of the source). However, this explanation is not valid here for
several reasons. Even if we set aside the question of natural language ergodicity, from the formal
point of view, the theorem requires that n is large enough so that all possible letter digrams are
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likely to be encountered more than once (many times, in fact). Needless to say that the length of a
single word is much less than that. Practically, if this explanation were to be adopted, we’d expect
the probability to guess a word to be on the order Pn, which is much smaller than the observed
probability. In fact, the only reason our subjects are able to guess words in context is that the
words are connected to the context and make sense in it, while under the assumptions of Shannon’s
theorem, the equiprobable subsequences are asymptotically independent of the context.

Another tentative argument is to presume that the total number of words in the language (either
in the vocabulary or in texts, which is not the same thing) of a given length increases with length,
which makes longer words harder to guess due to sheer expansion of possibilities. If there had been
exponential expansion of vocabulary with word length, we could argue that contextual restrictions
on word choice cut the number of choices by a constant factor (on the average), so the number of
words satisfying these restrictions still grows exponentially with word length. However, the data
does not support this idea. Distribution of words by length, whether computed from the actual
texts or from a dictionary (we used a Russian frequency dictionary containing 32000 words [14]),
is not even monotonic, let alone exponentially growing. The number of different words grows up
to about 8 characters of length, then decreases. This behavior is in no way reflected in Figs 1, 2,
so we can conclude that the total number of dictionary words of a given length is not a factor in
guessing success.

In fact, the word length distribution could have had a direct effect on unpredictability only
if the word length were known to the subject. But this is generally not the case. Subjects in our
experiment are not given any external clue as to the length of the omitted word. Since Russian verse
is for the most part metric, the syllabic length of a line is typically known, and this allows to predict
the syllabic length of the omitted word with a great deal of certainty. However unpredictability
depends on word length in exactly the same way for poetry and prose (see Fig. 3), and in prose
there are no external or internal clues for the word length. 3

This leaves us with the only reasonable explanation for the observed dependency: in course of
its evolution, the language tends to even out information rate, so that longer words carry propor-
tionally more information. This would be a natural assumption, since an uneven information rate is
inefficient: some portions will underutilize the bandwidth of the channel, and some will overutilize
it and diminish error-correction capabilities. In other words, as language changes over time, some
words and grammatical forms that are too long will be shortened, and those that are too short will
be expanded and reinforced.

It is interesting to note that this hypothesis was also proposed in passing by Church and Mercer
in a different context in [12]. Discussing applications of trigram word-prediction models to speech
recognition, they write (page 12):

In general, high-frequency function words like to and the, which are acoustically short,
are more predictable than content words like resolve and important, which are longer. This
is convenient for speech recognition because it means that the language model provides more
powerful constraints just when the acoustic model is having the toughest time. One suspects
that this is not an accident, but rather a natural result of the evolution of speech to fill the
human needs for reliable communication in the presence of noise.

A feature that is “convenient for speech recognition” is, indeed, not to be unexpected in natural
language, and from our results it appears that its extent is much broader than could be suggested
3 It is also worth noting that average unpredictability of words in poetry and prose is surprisingly close. In poetry,

it turns out, predictability due to meter and rhyme is counteracted by increased unpredictability of semantics and,
possibly, grammar. Notably, these two tendencies almost balance each other. This phenomenon and its significance
is discussed at length in [11].
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Fig. 3. Unpredictability as a function of word length in characters, prose only

by Church and Mercer’s observation. Of course, this is only one of many mechanisms that drive
language change, and it only acts statistically, so any given language state will have low-redundancy
and high-redundancy pockets. Thus, any Russian speaker knows how difficult it is to distinguish
between mne nado ’I need’ and ne nado ’please don’t’. Moreover, it is likely that this change
typically proceeds by vacillations. As an example consider the evolution of negation in English
according to [15] (p. 175–176):

the original Old English word of negation was ne, as in ic ne wāt, ’I don’t know’. This
ordinary mode of negation could be reinforced by the hyperbolic use of either wiht ’something,
anything’ or nāwiht ’nothing, not anything’ [...]. As time progressed, the hyperbolic force of
(nā)wiht began to fade [...] and the form nāwiht came to be interpreted as part of a two-
part, “discontinuous” marker of negation ne ... nāwiht [...]. But once ordinary negation was
expressed by two words, ne and nāwiht, the stage was set for ellipsis to come in and to
eliminate the seeming redundancy. The result was that ne, the word that originally had been
the marker of negation, was deleted, and not, the reflex of originally hyperbolic nāwiht became
the only marker of negation. [...] (Modern English has introduced further changes through
the introduction of the “helping word” do.)

This looks very much like oscillations resulting from an iterative search for the optimum length
of a particular grammatical form. It’s all the more amazing then, how this tendency, despite its
statistical and non-stationary character, beautifully manifests itself in the data.
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