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Abstract—We give a short review of some recent achievements in analysis of the M/G/1 queue
with egalitarian processor sharing discipline (EPS). The paper contains readly applicable ex-
pressions for the j-th moments (j ∈ N) of the (conditional) stationary sojourn time in the
M/G/1—EPS queue with K (K ∈ 0 ∪N) permanent jobs of infinite size. We show also how to
simplify the computations of the moments.

1. INTRODUCTION

Processor sharing queues, made very attractive models by the works of Kleinrock [1], [2] and
Yashkov [3], [4], play a central role in queueing theory. These models were originally proposed to
analyze the performance of scheduling algorithms in time–sharing computer systems, and continue
to find new applications which pose interesting mathematical problems. Over the past few years,
the processor sharing paradigm has emerged as a powerful concept for modeling of Web servers, in
particular, for evaluating the flow–level performance of end–to–end flow control mechanisms like
Transmission Control Protocol (TCP) in Internet.

The mathematical analysis of processor sharing queues has resulted in many insightful results.
Yet, a number of challenging problems remains to be explored. The main goal of this paper is to
gain understanding the problem of the moments of the stationary sojourn time in the M/G/1 queue
with egalitarian processor sharing (EPS), and to derive the formulas for the j-th moments (j ∈ N)
of the (conditional) sojourn time in the M/G/1—EPS queue with K (K ∈ 0 ∪ N) permanent jobs
of infinite size. Our results complement and develop the corresponding sections of the paper by
Yashkova and Yashkov [5].

An idea of the EPS discipline2 was introduced by Kleinrock [1] who studied only M/M/1 case
as a limit of the round–robin queue. In particular, he first showed that the mean sojourn time
conditioned on the initial job size (service requirement of the job) is linear function of the size
of the job. For an overview of the literature on processor–sharing queueing systems we refer to
Kleinrock [2] (1976), Koboyashi and Konheim [6] (1977), Jaiswal [7] (1982), Yashkov [4] (1987), [8]
(1990) and Yashkova and Yashkov [5] (2003).
1 This research was partially supported by Grant no. Sci.Sch.–934.2003.1 (Head R.A.Minlos) and Grant to the

Program of Fundamental Researches of Russian Academy of Sciences (the Division of Informatics) “New physical
and structural solutions in infotelecommunications”(Head N.A.Kuznetsov).

2 Under the EPS discipline, the processor (server) is shared equally by all jobs in the system. To put more concretely,
when 1 ≤ n < ∞ jobs are present in the system, each job receives service at rate 1/n. In other words, all these
jobs receive 1/n times the rate of service which a solitary job in the processor would receive. Jumps of the service
rate occur at the instants of arrivals and departures from the system. Therefore, the rate of service received by a
specific job fluctuates with time and, importantly, its sojourn time depends not only on the jobs in the processor
at its time of arrival there, but also on subsequent arrivals shorter of which can overtake a specific job. This makes
the EPS system intrinsically harder to analyze than, say, the First Come — First Served (FCFS) queue.
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The exact determination of the stationary sojourn time distribution in the M/G/1—EPS queue
was an open problem for a long time. After puzzling researchers for 15 years, Yashkov [9] (1981), [3]
(1983) found an analytic solution of this problem in terms of double Laplace tranforms (LT) (all
details contains also his book [10] (1989)). Schassberger [11] (1984) provided another (completely
different) approach to the exact solution by considering the EPS discipline as a limit of the round–
robin model (in discrete time). Later similar solutions were also made by means of the variants of the
methods from [3] and from [11] (or their combinations). See, for example, Rege and Sengupta [12]
(1994), Whitt [13] (1998) or Ward and Whitt [14] (2000). In particular, Ward and Whitt give some
additional explanation of our results and apply them to predicting congestions in the M/G/1—EPS
queue. Here we do not have possibility to discuss the contributions of other authors (for example,
Brandt and Brandt [15] (2003), Asare and Foster[16] (1983), Grishechkin, et alii) to the closely
related problems. We only mention that the EPS queue with permanent jobs has been also studied
in [13, 17] from point of view which is different from our approach. A telecommunication system
with CPU scheduling under SCO–UNIX can be considered as an example of using the EPS model
with permanent jobs for its description and predicting delays of the jobs [17].

In fact, our method has turned out to be a very fruitful to derive many further results, for
example, the time-dependent queue-length and sojourn time distributions in this and related models
(see, for example, [10, 8, 18,5]3).

These results hold for any stability condition. Besides, the entire transient and equilibrium
behaviour of the M/G/1—EPS queue is contained in the results mentioned, and the most (if not
all) available at present analytic solutions (and also many new) can be derived from them as special
cases via standard arguments (for example, by means of the Abel’s/Tauber’s theorems). However,
we shall not consider the transient solutions in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce some notations and
describe our starting point represented by Theorem 2.1. In Section 3 we obtain some interesting
consequences of Theorem 2.1, some of which were proved earlier as self–contained theorems but
now ones are derived as special cases. The final section contains few closing remarks.

2. PRELIMINARIES

In this section we give a short review of the M/G/1—EPS queue with K permanent jobs (only
in steady state). For the time-dependent results we refer to [5] and also to [10,8].

Jobs arrive to the single processor (server) according to a Poisson process with the rate λ > 0.
Their sizes (reguired service times) are i.i.d. random variables with a general distribution function
B(x) ((B(0) = 0, B(∞) = 1)) with the mean β1 <∞ and the Laplace–Stieltjes transform (LST)
β(s). Let βj denote the j–th moment of B(x), j ∈ N. The service discipline is the EPS: every job

3 Indeed, the assumptions which required to use the steady–state (stationary) solutions of any queueing systems are
rarely satisfied in real life. To be able really to apply queueing results in design and analysis of technical systems, in
very many cases, the obtained results of steady state analysis are not sufficient. For example, it is often necessary
to investigate the behaviour of the queue while it progresses towards a steady state (if and when a steady state
exists). Even the average queue length at time t gives us much more information in comparison with the stationary
mean of the number of jobs.

However, few stochastic systems are known to have exact time–dependent (transient) solutions for the distribu-
tions of the processes. As a rule, such systems are the M/G/1 queues with simpler disciplines (for example, FCFS,
see, for example, Takacs [19]). Besides, all time–dependent solutions of the queues of the type M/G/1 are obtained
in terms of double transforms (on space and time) from which it is very hard to extract necessary information
concerning the behaviour of the system. (Moreover, much more advanced mathematical techniques become neces-
sary for the time–dependent solutions in comparison with steady state analysis.) Some exceptions give variations
of the M/M/1—FCFS queue for which closed–form transient solutions are known. As a rule, the exact transient
analysis of the M/M/1—FCFS queue involves infinite sums of Bessel functions. In general, explicit exact solutions
are highly unlikely for the time–dependent cases.
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is being served with rate 1/n, when n > 0 jobs are present in the system. The EPS discipline is
modified by having K ≥ 0 extra permanent jobs with infinite sizes. The system works in steady
state. In other words, ρ = λβ1 < 1 and very long time went from the instant 0 that marks the start
of the work of our system till current time.

It is well known, due to Sakata et al. [20], that the stationary distribution (Pn)n≥0 of the number
of ordinary jobs in the M/G/1—EPS queue as K = 0 is geometrically distributed

P0n = (1− ρ)ρn, n ∈ 0 ∪ N, (2.1)

where ρ = λ
∫∞
0 (1−B(x))dx < 1. We note that (P0n)n≥0 depends on the service time only through

its mean.
For K ≥ 0 the equality (2.1) takes the form

PKn = (1− ρ)K+1

(
n + K

K

)
ρn, n ∈ 0 ∪ N. (2.2)

We shall let that VK(u) denotes the conditional sojourn time of a job of the size u upon its
arrival. This job enter into the EPS system with K ≥ 0 permanent jobs in steady state. Let
vKj = E[VK(u)j ]. (We shall omit the index K in these and similar notations when K = 0.)

Define the LST of VK(u) by vK(r, u) = E[e−rVK(u)] for Re r ≥ 0 and u ≥ 0.
Let π(r) be the LST of the busy period distribution (due to ordinary, that is, non–permanent

jobs). In other words, it is the positive root of the well–known Takács functional equation [19]

π(r) = β(r + λ− λπ(r)) (2.3)

with the smallest absolutely value.
It is known from [5] the following theorem

Theorem 2.1. When ρ < 1,

vK(r, u) .= E[e−rVK(u)] = v(r, u)K+1, (2.4)

where v(r, u) is given by the the equality (2.5):

v(r, u) .= E[e−rV (u)] =
(1− ρ)e−u(r+λ)

ψ(r, u)− ã(r, 0, u)
. (2.5)

Here

ã(r, 0, u) = λψ(r, u) ∗
[
e−u(r+λ)(1−B(u))

]
+ λe−u(r+λ)

∫ ∞

u
(1−B(x))dx, (2.6)

where “∗”is the Stieltjes convolution sign (on variable u), and ψ(r, u) is the LST (with respect to x)
of some function Ψ(x, u) of two variables (possessing the probability density on variable x), which,
in turn, has a Laplace transform (LT) with respect to u(argument q)

ψ̃(r, q) =
q + r + λβ(q + r + λ)

(q + r + λ)(q + λβ(q + r + λ))
(r ≥ 0, q > −λπ(r)). (2.7)

In (2.7), β(r) =
∫∞
0 e−rx dB(x) and π(r) (in the conditions imposed on (2.7)) is understood as the

minimal solution of the functional equation (2.3).
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Thus, the function ψ̃(r, q) is given in the form of the two–dimensional transform of the function
Ψ(x, u))

ψ̃(r, q) =
∫ ∞

0

∫ ∞

0
e−rx−qudxΨ(x, u)du. (2.8)

In other words, ψ(r, u) in equality (2.5) is the Laplace transform inversion operator, ψ(r, u) =
L−1(ψ̃(r, q))(r, u), that is, the contour Bromvich integral

ψ(r, u) =
1

2πi

∫ +i∞+0

−i∞+0
ψ̃(r, q)equ dq.

Remark 21. Briefly, we have derived the expression for E[e−rVK(u)] by writing the sojourn time
as some generalized functional on a branching process (like the processes by Crump–Mode–Jagers)
by means of simple extensions of (non–trivial) arguments from [9, 3]. Using the structure of the
branching process, we found and solved a system of partial differential equations (of the first order)
determining the components of a (non–trivial, too) decomposition of VK(u). It leads to E[e−rVK(u)]
(see also Remark 33).

3. RESULTS

We showed in the Section 2 that the determination of the steady–state sojourn time distribution
in the queue M/G/1—EPS with K permanent jobs is simple extension of the results from [3], [9].
However, the solution contains the Bromwich countour integrals. First we consider the case K = 0.
Equivalent form of (2.5) (without contour integrals) is given in the following theorem.

Theorem 3.1. Equivalent form of (2.5) (without the Bromwich countour integrals) is given by

1
v(r, u)

=
∞∑

n=0

rn

n!
ξn(u), (3.1)

where
ξ0(u) = 1, ξn(u) =

n

(1− ρ)n
un−1 ∗W (n−1)∗(u), n = 1, 2, . . . (3.2)

Here W (n−1)∗(u) is (n − 1)–fold convolution of the steady–state waiting time distribution W (u)
in the familiar M/G/1—FCFS system with itself (W 0∗(u) = 1(u), W 1∗(u) = W (u)), the LST of
W (u) is given by the well–known Pollaczek–Khintchine formula as

w(q) =
1− ρ

1− ρf(q)
, (3.3)

where f(q) = (1−β(q))/(qβ1) is the LST of the excess of B(·), that is, F (x) = β−1
1

∫ x
0 (1−B(y))dy

(F 0∗(x) = 1(x), the Heaviside function, F 1∗(x) = F (x)).

Proof. We rewrite (2.5) in the form of Theorem 3.2 from [11] (see also (5.5) in [4]), namely

v(r, u) =
(1− ρ)δ(r, u)

1− ρδ(r, u)
[∫ u

0
dF (x)

δ(r,u−x) + (1− F (u))
] (Re r ≥ 0), (3.4)

where
δ(r, u) = e−u(r+λ) /ψ(r, u) (3.5)

and F (x) is introduced in Theorem 3.1. To reach our aim, it is used the LT of 1/δ(r, u) with respect
to u (argument q), which is found from (2.7) as ψ̃(r, q − r − λ), r ≥ 0, q > r + λ − λπ(r) (cf.
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also the third line on p.8 in [4]). Now we obtain after simple algebra the following power series
expansion of the LT of the function 1/v(r, u), r ≥ 0, u ≥ 0∫ ∞

0
e−qu 1

v(r, u)
du =

1
q

[
1 +

1
1− ρ

r

q

1
1− 1

1−ρ
r
qw(q)

]

=
1
q

[
1 +

∞∑
n=1

(
1

1− ρ

r

q

)n

w(q)n−1

]
, (3.6)

where w(q) is given by (3.3). We note that
∣∣∣ rw(q)
(1−ρ)q

∣∣∣ < 1 as q > r + λ − λπ(r), ρ < 1. Now it is
easily to invert analytically (on argument q) each term of the power series in r (3.6). The result is
given by (3.2) whence it follows (3.1), the right–hand side of which is the power series in r with
coefficients ξn(u)/n!. ut

The idea of such approach goes back to Heaviside. Similar results are obtained in [21], [22]. In
fact, the form of Var[V (u)] [9], [3] (see the equality (3.10) below) stimulates a guess about the
possibility of such expansion.

Remark 31. The formula for Wn∗(x) in (3.2) can be represented in the following form

Wn∗(x) = (1− ρ)n
∞∑

k=0

(
k + n− 1
n− 1

)
ρkF k∗(x).

It is done, for example, by inversion of w(q)n, where w(q) is given by (3.3).

Remark 32. We note that the by–product of our analysis is the distribution functionW (x) whose
LST is given by (3.3). However, the analysis of EPS queue gives the other quantity (corresponding
to a non–probability measure) W ◦(x) = W (x)/(1 − ρ). The form of the LST of W ◦(x) is well–
known: w◦(q) =

∑∞
n=0 ρ

nfn(q). Unlike W (x), W ◦(x) is well defined for all ρ > 0 and x > 0. It can
be shown that W ◦(x) <∞ for all ρ > 0, x > 0 and for any B(·) (despite on the fact that, for ρ ≥ 1,
W ◦(x) →∞ as x→∞).

Theorem 3.2. Let vn(u) = E[V (u)n], n = 1, 2, . . . Then it holds the following recursive formula

vn(u) =
n∑

i=1

(
n

i

)
vn−i(u)ξi(u)(−1)i+1 (3.7)

Proof. Because v(r, u) is analytical function in r (in particular, in r = 0), we can use the Tailor
series expansion of v(r, u) for small r > 0

v(r, u) = 1− r

1!
v1(u) +

r2

2!
v2(u)−

r3

3!
v3(u) + . . . (3.8)

The product of (3.8) and (3.1) gives

− r

1!
[v1(u)− ξ1(u)] +

r2

2!
[v2(u)− 2v1(u)ξ1(u) + ξ2(u)]

− r3

3!
[v3(u)− 3v2(u)ξ1(u) + 3v1(u)ξ2(u)− ξ3(u)] + . . . = 0

and it leads to (3.7) after differentiating n times with respect to r and setting r = 0. ut
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In particular, the expressions for the first two moments of V (u) are:

v1(u) = E[V (u)] = u/(1− ρ) (3.9)

(this is well-known result due to Sakata et al. [20] (1969)),

Var[V (u)] = v2(u)− v2
1(u) =

2
(1− ρ)2

∫ u

0
(u− x)(1−W (x)) dx, (3.10)

where W (x) is introduced in Theorem 3.1, and it is expressed as

W (x) = (1− ρ)
∞∑

n=0

ρnFn∗(x) (3.11)

(other variables were introduced above).
The formula (3.2) implies that ξ1(u) = E[V (u)] in (3.9). The formula for the conditional variance

(3.10) was first obtained by Yashkov [9]. The standard way for the computation of the moments is
the following

vn(u) = lim
r↓0

(−1n)
∂nv(r, u)
∂rn

, n ∈ N. (3.12)

However, the LST v(r, u) in Theorem 2.1 is very hard to differentiate in r more than once (practically
almost impossible matter) since this LST has a rather complex form due to a highly complicated
form of such constituents of (2.5) as ã and ψ. Therefore Var[V (u)] is first obtained by solving an
alternative system of differential equations (see, for example, [10, Chapter 2] and also Appendix)
which are derived by analogy with the equations of [9, Section 2] or with the equations in the proof
of [3, Theorem 4]. These equations are simpler forms of equations from [9], [3] because ones are
composed not for the LST v(r, u) but only for the second and the first moments. Thus the formula
(3.7) for the case n = 2 in Theorem 3.2 was derived 20 years earlier than the same formula for
arbitrary integer n (see [21] (1999), [22] (2000))

It can be useful for asymptotic expansion of vn(u) for small and large u in the spirit of such
expansion for Var[V (u)] (see final section for some details). Such results for Var[V (u)] were obtained
at first in [9] (1981) (see also [3]).

Now we show how to extend the formulas (3.9) and (3.10) to the case when the M/G/1—EPS
queue is modified by having K ≥ 0 extra permanent jobs with infinite sizes.

Theorem 3.3. In the setting above,

E[VK(u)] =
(K + 1)u

1− ρ
, (3.13)

Var[VK(u)] =
2(K + 1)
(1− ρ)2

∫ u

0
(u− x)(1−W (x))dx, (3.14)

where W (u) is the steady–state waiting time distribution in the M/G/1—FCFS queue, represented
by the equality (3.11).

Proof. In our case, the equality (3.12) takes the form

vKn(u) = lim
r↓0

(−1n)
∂nvK(r, u)

∂rn
, n ∈ N. (3.15)

The formula (3.13) follows directly from (2.4) by means of applying (3.15) as n = 1.
Taking into account (3.10), the formula (3.14) follows also from (2.4) by means of applying (3.15)

as n = 2 after some simple algebra. ut
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Remark 33. An alternative way to obtain (3.14) is the following. We can compose and solve the
system of the partial differential equations (of the first order) which satisfy the second and the first
moments of VK(u). The variant of such equations is known from [8, 10] as K = 0. We point out
the following fact. These equations rely on a decomposition of the sojourn time of the (tagged)job
with the size u that arrives to the EPS queue when n standard jobs are present with remaining
service demands x1, . . . xn (a key ingredient of analysis). Denoting this conditional sojourn time by
VKn(u;x1, . . . xn), it holds

VKn(u;x1, . . . xn) d= (K + 1)D(u) +
n∑

i=1

Φ(xi, u), (3.16)

where all components are independent random variables.
The random variable D(u) constitutes a “main” component of the sojourn time: it has the

distribution of the sojourn time of a job with the size u that enters into a empty (from the standard
jobs) system. By the way, its LST is given by (3.5). When the system is not empty, the i–th standard
job (among the jobs which are sharing the capacity of the processor together with permanent jobs),
having remaining size xi, “adds” a delay Φ(xi, u) = Φ(xi∧u, u) to the new job’s sojourn time. Note
that D(u) = Φ(xi, u) for xi ≥ u. Then the same chain of arguments as in [3] can be used to derive
(2.4).

4. CONCLUSION

Using Theorems 2.1 and 3.2, we can easily obtain all other moments of VK(u) in M/G/1—
EPS queue with K ≥ 0 permanent jobs. However, the exact expression even for the variance of
the sojourn time (see (3.14) involves an integration term, making an exact computations difficult
from practical point of view. The same holds for the third, fourth, etc. moments. This difficulty
remains also in the case K = 0. To overcome the difficulty, it is possibly to obtain some simple
approximations for the second moments, see, for example, Villela et al. [23]. We note that there
exist also an upper (and lower) bounds for Var[V (u)]. These bounds only depends on ρ and the
size of job u. In addition, the bounds have the attractive property of intensitivity to B(x), and the
difference between the upper and lower bounds is small, particularly, for small and moderate values
of ρ. These second moments tight bounds can be easily generalized into higher moments of V (u)
and also to the case K > 0.

It are also known the asymptotic estimates of Var[V (u)] as u→ 0 and u→∞ [24]. For example,

V ar[V (u)] ∼ u2ρ

(1− ρ)2
as u→ 0.

This is some asymptotics of the sojourn time variance of a very small jobs, and it leads to intensitive
upper bounds with special structure requiring only knowledge of the traffic load and the job size.
Now our results may be easily extended to the higher moments and also to the case K permanent
jobs. Moreover, some preliminary analysis of asymptotics (see some examples in [9, 10]) tells us
about a high accuracy of such estimates in many typical cases.

APPENDIX

The appendix contains the derivation of the first two moments of the random variable V (u) for
K = 0 (see [10] for details).

Expressions for the first two moments.
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The components of (3.16) are the analogs of the “delays elements” of the tagged job in the
case of the M/M/1 queue with a round–robin discipline [25], which are interpretable in terms of
terminating busy periods. Since the case in question is considerably more complex in virtue of
the arbitrary distribution B(x) and the simultaneous servicing with varying rate, to calculate the
distribution functions of the components of (3.16), it is necessary to solve some system of differential
equations. This question will be considered a bit later.

Let us define δj(u) = E[D(u)j ] and ϕj(x, u) = E[Φ(x, u)j ] for j ∈ N. It then follows from (3.16)
that as K = 0

E[V (u)|n;x1, . . . xn] = δ1(u) +
n∑

i=1

ϕ1(xi, u), (A.1)

E[V (u)2|n;x1, . . . xn] = δ2(u) +
n∑

i=1

ϕ2(xi, u)

+ 2δ1(u)
n∑

i=1

ϕ1(xi, u) + 2
n∑

i=1

n∑
j=i+1

ϕ1(xi, u)ϕ1(xj , u). (A.2)

We know that the probability of dwelling in the system L = n jobs whose remaining sizes
lie in infinitesimally small neighborhoods of the points x1, . . . xn has the form of (2.1), where
ρ = λ

∫∞
0 (1−B(x))dx < 1.

We obtain the unconditional moments of the random variable V (u) by averaging (A.1) and (A.2)
over the distribution (2.1)

v1(u) = δ1(u) +
ρ

1− ρ
ϕ̄1(u), (A.3)

v2(u) = δ2(u) +
ρ

1− ρ
ϕ̄2(u) +

2ρ
1− ρ

δ1(u)ϕ1(u) +
2ρ2

(1− ρ)2
ϕ̄2

1(u). (A.4)

Here, we used the notation

ϕ̄i(u) =
1
β1

∫ ∞

0
ϕi(x, u)(1−B(x))dx. (A.5)

Computation of v1(u) and v2(u).
Let us prove (3.16) as K = 0. Without loss of generality, we may assume that a tagged job of

size u arrives in the system at the initial instant and that the system is in the state n;x1, . . . xn,
n ∈ N. The random variable V (u) is the sum of the serviced parts of the sizes of those jobs that
were serviced the same time as the tagged job. Since these sizes are independent, to prove (3.16),
we need only to show that it is possible to group them in a suitable way. Branching processes
generated by the n jobs present in the system at the instant of appearance of the tagged job and
by the marked job itself were examined for this purpose in [25,3,9]. Processes of such type arise in
queueing theory in connection with the derivation of the functional equation for the busy period
distribution [19].

In describing branching processes, it is useful to go over to a new time scale: intervals of time
throughout which n jobs are serviced in the system are compressed to 1/n their original sizes.
With such a random change of time scale, the rate of servicing is no longer a random variable but
is constant and equal to unity. However, the input flow then changes. The memoryless property
remains, but the intensity becomes variable, depending on the number of jobs being serviced. In
other words, on an interval of time for which there are n jobs in the system, the intensity of
appearance is equal to λn (and to λ for n = 0); the input flow on this interval can be regarded as
the superposition of independent Poisson flows of intensity λ.
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We now introduce branching processes of generation of descendants of jobs. To each job we assign
an independent Poisson process of intensity λ. This flow is “included” at the instant of appearance
of a job in the system and it is “excluded” at the instant of departure of a job from the system.
We shall consider jobs of this flow to be descendants of the original job. All arriving jobs can be
partitioned according to a transitive descendance relationship into disjoint classes according to to
the number of jobs in the system at the initial instant. Since the instants of appearance and the sizes
of jobs of different classes are independent, the question of computation of the distribution V (u)
can be reduced to calculating the distributions of certain functionals of the independent branching
processes introduced.

Consider an interval J of the length u located arbitrarily on the time axis. Suppose that, at
the initial instant of that interval, there is the job of size x in the system. We define the random
variable Φ(x, u) as the sum of these parts of sizes of that job and its descendants that are serviced
in the interval J . We should point out that, in the case of an infinite interval (u→∞), the random
variable Φ(x, u) becomes the usual busy period for which the size of job opening it is fixed and
equal to x.

It follows from the definition that Φ(x, u) is, for x ≥ u, independent of x. In this case, it is
convenient to introduce for it the special notation D(u) = Φ(x, u) for x ≥ u. For the moments, we
obviously have

δj(u) = ϕj(x, u) for x ≥ u, j ∈ N. (A.6)

The exposition given above enables us to obtain (3.16) directly (for K = 0).
For the moments of the random variables D(u) and Φ(x, u), we can derive the differential

equations, examining the intervals of time differing by an infinitesimal amount ∆ and remembering
that each newly appearing job can be regarded as an ancestor generating a branching process of
the type indicated, that is independent of the other jobs.

Specifically,

D(u+ ∆) =

{
∆ +D(u), if no descendants appears,
∆ +D(u) + Φ(x, u), if a descendant of size x appears.

(A.7)

Similarly, for x < u,

Ψ(x+ ∆, u+ ∆) =

{
∆ + Φ(x, u), if no descendants appears,
∆ + Φ(x, u) + Φ(x, u), if a descendant of size x appears.

(A.8)

If we apply to (A.7) and (A.8) the formula for the total mathematical expectation, we obtain,
by passing to the limit, the following two systems of equations, represented below together with
the obvious additional conditions

dδ1(u)
du

= 1 + λ

∫ ∞

0
ϕ1(y, u)dB(y), (A.9)

∂ϕ1(x, u)
∂x

+
∂ϕ1(x, u)

∂u
= 1 + λ

∫ ∞

0
ϕ1(y, u)dB(y), (A.10)

δ1(0) = ϕ1(0, u) = ϕ1(u, 0) = 0

.
dδ2(u)
du

= 2δ1(u)
[
1 + λ

∫ ∞

0
ϕ1(y, u)dB(y)

]
+ λ

∫ ∞

0
ϕ2(y, u)dB(y), (A.11)
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∂ϕ2(x, u)
∂x

+
∂ϕ2(x, u)

∂u
= 2ϕ1(x, u)

[
1 + λ

∫ ∞

0
ϕ1(y, u)dB(y)

]
+ λ

∫ ∞

0
ϕ2(y, u)dB(y), (A.12)

δ2(0) = ϕ2(0, u) = ϕ2(u, 0) = 0

.
The system (A.9), (A.10) is easily solved in the domain x < u. To do this, it is necessary to

solve the following partial differential equation of the first order

∂ϕ1

∂x
+
∂ϕ1

∂u
=
∂δ1
∂u

.

For this equation, the conjugate system of ordinary differential equations have the form dx/1 +
du/1 = dϕ1/δ

′
1. The first integrals are C1 = u − x, C2 = ϕ1 − δ1, and the general solution is

expressed as C2 = f(C1). From here, taking into account the additional conditions, it follows

ϕ1(x, u) = δ1(u)− δ1(u− x) for x < u. (A.13)

Substituting (A.13) into (A.9) and taking into account the equality (A.6), we obtain the following
equation

dδ1(u)
du

= 1 + λδ1(u)− λ

∫ u

0
δ1(u− y)dB(y).

Applying the Laplace transform to each term of this equation yields∫ ∞

0
e−ruδ1(u)du =

1
r2[1− λ(1− β(r))/r]

. (A.14)

It follows from (A.14)

δ1(u) = u+
∫ ∞

0
(u− x)

∞∑
n=1

ρnfn∗(x)dx, (A.15)

where fn∗(x) is the n–fold convolution of the density of the distribution function of the remaining
sizes f(u) = β−1

1 [1−B(u)] with itself.
Thus the solutions of the system of the equations (A.9), (A.10) are given by the equalities (A.13)

and (A.15).
The system (A.11), (A.12) is more complicated, but we do not have to solve it. We proceed as

follows: let us multiply (A.12) by λ(1 − ρ)−1[1 − B(x)], integrate with respect to x from 0 to ∞,
and add the resulting equation to (A.11). Then,

d

du

[
δ2(u) +

ρ

1− ρ
ϕ̄2(u)

]
= 2

[
1 + λ

∫ ∞

0
ϕ1(y, u)dB(y)

] [
δ1(u) +

ρ

1− ρ
ϕ̄1(u)

]
, (A.16)

where ϕ̄2(u) is given by (A.5).
A similar procedure for the system (A.9), (A.10) leads to

d

du

[
δ1(u) +

ρ

1− ρ
ϕ̄1(u)

]
=

1
1− ρ

,

whence it follows

δ1(u) +
ρ

1− ρ
ϕ̄1(u) =

u

1− ρ
, (A.17)
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which, in virtue (A.3), yields v1(u).
Keeping (A.9) and (A.17) in mind, we rewrite the equation (A.16) in the form

d

du

[
δ2(u) +

ρ

1− ρ
ϕ̄2(u)

]
=

2u
1− ρ

dδ1(u)
du

.

This last equation and (A.17) enable us to reduce (A.4) to the form

v2(u) =
2u2

(1− ρ)2
− 2

1− ρ

∫ u

0
δ1(x)dx,

where δ1(x) is given by (A.15). Obviously, the variance is given by

Var[V (u)] =
u2

(1− ρ)2
− 2

1− ρ

∫ u

0
δ1(x)dx. (A.18)

From the form of (A.18) it immediately follows that the coefficient of variation of the sojourn
time distribution is less than unity. In other words the (conditional) distribution of the random
variable V (u) belongs to the class IFR (Increasing Failure Rate) probability distributions.

The formula (3.10) is obtained from (A.18) (see [10] for details).
As examples of the use of (A.18) we give below the exact expressions for Var[V (u)] obtained in

closed form for the following distributions of job’s sizes (type M , E2 and H2, respectively):
a)

B1(x) = 1− e−µx,

b)
B2(x) = 1− e−µx − µxe−µx,

c)
B3(x) = γ(1− e−µ1x) + (1− γ)(1− e−µ2x).

We note that δ1(u) in (A.18) depends on B(x), and it is derived by means of inversion of (A.14)
(see the equality (A.15)). We obtain after some algebra that in case a)

Var[V (u)] =
2ρu

µ(1− ρ)3
− 2ρ
µ2(1− ρ)4

[
1− e−µ(1−ρ)u

]
. (A.19)

In cases b) and c) we have

Var[V (u)] = − 2hu
1− ρ

− 2
(1− ρ)(y1 − y2)

[
hy2 + ρ/(1− ρ)

y1

(
1− e−y1u

)
− hy1 + ρ/(1− ρ)

y2

(
1− e−y2u

)]
. (A.20)

The terms of the right–hand side of (A.20) are:
for B2(x) — ρ = 2λ/µ, h = −3ρ/(2µ(1− ρ)2), y1,2 are the roots of the quadratic equation

y2 − (2µ− λ)y + µ2 − 2λµ = 0;

for B3(x) — ρ = γλ/µ1 + (1− γ)λ/µ2, h = (λ− (y1 + y2)ρ/(1− ρ))/(y1y2), y1,2 are the roots of
the quadratic equation

y2 − (µ1 + µ2 − λ)y + µ1µ2 − λµ1 + λµ1γ − λµ2γ = 0.
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