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Abstract—Starting from the well–known results of analysis of the M/G/1 queue with egalitarian
processor sharing (EPS), we consider two special cases: the M/M/1—EPS and the M/D/1—
EPS, and show how to obtain the (conditional) sojourn time distribution for these special cases
from more general results.

1. INTRODUCTION

Last years processor sharing models continue to find new applications, for example, for predicting
delays in WEB servers, in performance evaluation of the main variants of the Transmission Control
Protocols in INTERNET, for provisioning servers for E–commerce systems, etc. The central role is
played by the simpler variants of the M/G/1 queue with egalitarian processor sharing (EPS), for
instance, by the M/M/1—EPS queueing system. It is instructive to show how some special results
can be obtained from the well–known results of analysis of the M/G/1—EPS queue. Seemingly,
two main seminal papers concerning the determination of the stationary sojourn time distribution
in such model (in terms of double Laplace transforms (LT)) are [1] (1983) and [2] (1984). (It seems
that all subsequent papers in this direction are, in fact, some “derivatives” of the papers cited above.
For example, the Ott’s paper (1984) has, in essence, a loan character despite a slight generalized
result.) Starting from the results of [1,2], here we consider two special cases: the M/M/1—EPS and
the M/D/1—EPS, and show how to obtain the (conditional) sojourn time distribution for these
special cases from more general results. We also rely (partially) on the begin of the section 2.6
in [3, pp. 73–75] (1989) (this research monograph is not sufficiently available for English–language
readers because it was published in Russian).

2. PRELIMINARIES

In this section we give a short representation about the main results of the determination of
the stationary sojourn time distribution (in terms of double Laplace transform) for the M/G/1—
EPS queue. These results were derived in the begin of eighties of twenty centure by Yashkov [1]
(1983) and Schassberger [2] (1984) independently from each other by means of totally different new
analytical methods . The papers [1, 2] also give some representation about the previous works of
these authors in this directory, that enable them to get eventually this result the significance of
which is at least commensurable with the Pollaczek–Khinchine formula.

Jobs arrive to the single processor (server) according to a Poisson process with the rate λ > 0.
Their sizes (reguired service times) are i.i.d. random variables with a general distribution function
B(x) ((B(0) = 0, B(∞) = 1)) with the mean β1 <∞ and the Laplace–Stieltjes transform (LST)

1 This research was partially supported by Grant no. Sci.Sch.–934.2003.1 (Head R.A.Minlos) and Grant to the
Program of Fundamental Researches of Russian Academy of Sciences (the Division of Informatics) “New physical
and structural solutions in infotelecommunications”(Head N.A.Kuznetsov).
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β(s) =
∫ +∞
0− e−sxdB(x) 2. The service discipline is the EPS: every job is being served with rate

1/n, when n > 0 jobs are present in the system. In other words, all these jobs receive 1/n times the
rate of service which a solitary job in the processor would receive. Jumps of the service rate occur
at the instants of arrivals and departures from the system. Therefore, the rate of service received
by a specific job fluctuates with time and, importantly, its sojourn time depends not only on the
jobs in the processor at its time of arrival there, but also on subsequent arrivals shorter of which
can overtake a specific job. This makes the EPS queue intrinsically harder to analyze than, say, the
classical First Come—First Served (FCFS) queue or many other classical disciplines. The system
works in steady state. In other words, ρ = λβ1 < 1 and very long time went from the start of the
work of the EPS system till current time.

It is well known that the stationary distribution (Pn)n≥0 of L, the number of jobs in the M/G/1—
EPS queue, has the geometrical form

Pn = P(L = n) = (1− ρ)ρn, n ∈ 0 ∪ N, (2.1)

where ρ = λ
∫∞
0 (1−B(x))dx < 1. We note that (Pn)n≥0 depends on the service time only through

its mean.
We shall let that V (u) denotes the conditional sojourn time of a job of the size u upon its arrival.

Define the LST of V (u) by v(s, u) = E[e−sV (u)] for Re s ≥ 0 and u ≥ 0.
Let π(r) be the LST of the busy period distribution . In other words, it is the positive root of

the well–known Takács functional equation

π(s) = β(s+ λ− λπ(s)) (2.2)

with the smallest absolutely value.
It is known from [1], [2] the following theorem which is given below in somewhat different (but

equivalent) form that resembles Theorem 3.2 in [2] (except for a difference in notations of the
components which, in turn, are drawn from Theorem 4 [1]).

Theorem 2.1. When ρ < 1,

v(s, u) .= E[e−sV (u)] ==
(1− ρ)e−u(s+λ)

ψ(s, u)− ã(s, u)
. (2.3)

Here
ã(s, u) = λψ(s, u) ∗

[
e−u(s+λ)(1−B(u))

]
+ λe−u(s+λ)

∫ ∞

u
(1−B(x))dx, (2.4)

where “∗” is the Stieltjes convolution sign (on variable u), and ψ(s, u) is the LST (with respect
to x) of some function Ψ(x, u) of two variables (possessing the probability density on variable x),
which, in turn, has a Laplace transform (LT) with respect to u(argument q)

ψ̃(s, q) =
q + s+ λβ(q + s+ λ)

(q + s+ λ)(q + λβ(q + s+ λ))
(s ≥ 0, q > −λπ(s)). (2.5)

In (2.5), β(s) =
∫ +∞
0− e−sx dB(x) and π(s) (in the conditions imposed on (2.5) is understood as the

minimal solution of the functional equation (2.2).

2 There is no loss of generality in assuming that β1 = 1, since this case may be handled by rescaling the rate of the
Poisson process. Furthermore, we assumed that B(x) has no atom in the origin. For otherwise, the pattern of busy
and idle periods is essentially the same as in a queueing process for which arrival rate is reduced to λ[1−P(B = 0)],
and service time has the distribution of B given that B > 0.
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Thus, the function ψ̃(s, q) is given in the form of the two–dimensional transform of the function
Ψ(x, u))

ψ̃(s, q) =
∫ ∞

0

∫ ∞

0
e−sx−qudxΨ(x, u)du. (2.6)

In other words, ψ(s, u) in equality (2.3) is the Laplace transform inversion operator, ψ(s, u) =
L−1(ψ̃(s, q))(s, u), that is, the contour Bromvich integral

ψ(s, u) =
1

2πi

∫ +i∞+0

−i∞+0
ψ̃(s, q)equ dq.

Remark 21. Briefly, we have derived the expression for E[e−sVK(u)] by writing the sojourn time
as some generalized functional on a branching process (like the processes by Crump–Mode–Jagers)
by means of simple extensions of (non–trivial) arguments from [1]. Using the structure of the
branching process, we found and solved a system of partial differential equations (of the first order)
determining the components of a (non–trivial, too) decomposition of V (u). It leads to E[e−sV (u)].

It is instructive to rewrite (2.3) as

v(s, u) = (1− ρ)δ(s, u)
[
1− ρ

∫ ∞

0
ϕ(s, x, u)

(1−B(x))
β1

dx

]−1

=
(1− ρ)δ(s, u)
1− ρϕ(s, u)

, (2.7)

where

ϕ(s, x, u) =
{
δ(s, u) for x ≥ u,
δ(s, u)/δ(s, u− x) for x < u,

(2.8)

and
δ(s, u) = e−u(s+λ)/ψ(s, u), u ≥ 0. (2.9)

(The equality for ψ(s, u) is given above.)

Remark 22. In some cases, it can be useful the equivalent forms of (2.8). For example,

ϕ(s, x, u) = e−(x∧u)(s+λ)+λ
R x∧u
0 ϕB(s,u−y) dy, x ∈ [0,∞), (2.10)

where

ϕB(s, t) .=
∫ ∞

0
ϕ(s, x, t) dB(x) =

∫ t

0
e−

R t
t−x(s+λ−λϕB(s,y)) dy dB(x)+ (1−B(t))e−

R t
0 (s+λ−λϕB(s,y)) dy.

(2.11)
The equality (2.11) represents the functional equation to which ϕB(s, ·) satisfies. ϕB(s, t) is the LST
of the distribution of the terminating busy period (it terminates at time t) for the M/G/1—EPS
queue. This is a non–trivial notion in queueing theory (among the others which were introduced
in [1,3]): the distribution of such terminating busy period is not insensitive to the work–conserving
discipline. For example, the M/G/1—FBPS queue has another distribution of the terminating busy
period [3,6]. The solution of the equation (2.11) was obtained in terms of the function ψ (ψ(s, t) .=
exp(−λ

∫ t
0 ϕB(s, y) dy)) (more precisely, in terms of the LT for this function, see (2.5)). This remark

also shows that the study of the sojourn time in the M/G/1 queue (even in steady–state) requires
much deeper analysis in comparison with an analysis that is expected on the customary level.

Next we consider two special cases of the M/G/1—EPS queue in equilibrium: the M/D/1 and
the M/M/1 systems with egalitarian processor sharing.
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3. THE M/D/1—EPS QUEUE

Let us begin from the case M/D/1—EPS queueing system when the job’s sizes are i.i.d. random
variables with the deterministic distribution

B(x) =
{

0, 0 ≤ x < u,
1, x ≥ u.

Hence the LST of this distribution has the form β(s) = exp(−su) with the moments βi = ui,
i = 1, 2, . . .. The offered load is equal to ρ = λu < 1. In this special case, the distributions of
conditioned and unconditioned sojourn times coincide, hence we may use V = V (u) to denote the
steady–state sojourn time of a job in the queue M/D/1—FBPS.

Corollary 3.1. The LST of the stationary distribution of V (u) in the special case M/D/1—EPS
has simpler form than in the general case reflected in Teorem 2.1

v(s) = v(s, u) =
(1− ρ)(s+ λ)2e−u(s+λ)

s2 + λ[s+ (s+ λ)(1− ρ)]e−u(s+λ)
. (3.1)

In the case considered, the formula (2.9) takes the form

δ(s, t) =
s+ λ

λ+ set(s+λ)
, t ≤ u. (3.2)

Proof. The solution for v(s, u) for the case M/D/1—EPS can be found from Theorem 2.1 in
explicit form (see [3] for details). It is convenient for this to use the equation (2.7) (cf. the equality
(2.33) from [3]). In our case, the equation mentioned is reduced to the form

v(s) = v(s, u) =
(1− ρ)δ(s, u)

1− λδ(s, u)
∫ u
0

dx
δ(s,u−x)

(3.3)

where δ(s, u) is given by (3.2). To obtain (3.2), it is better to use the equation (3.15) from [1] for
the unknown function δ(s, u) (see also (2.29) in [3] or the first equation from (2.18) in [6]) instead
of inverting the function ψ̃(s, q) that is given by (2.5). Then the equation mentioned reduces to the
form

∂δ(s, t)
∂t

+ (s+ λ)δ(s, t)− λδ(s, t)2 = 0 (3.4)

with the additional condition δ(s, 0) = 1. This is a Bernoulli equation. It is reduced to linear one
after division of each term by δ(s, t)2 and the change of variable 1/δ(s, t) = u. The solution of (3.4)
is given by (3.2). The final result (3.1) follows after the substitution (3.2) into (3.3). ut

Remark 31. The expression for the variance of V (u) = V (see (3.20) in [1]) reduces to the form

VarV (u) =
u2

(1− ρ)2
− 2u2(eρ − 1− ρ)

ρ2(1− ρ)
.

4. THE M/M/1—EPS QUEUE

The following corollary holds for the second special case.

Corollary 4.1. The LST of the stationary distribution of V (u) in the special case M/M/1—EPS
has the following form

v(s, u) =
(1− ρ)(1− ρb2)e−u(s+λ−λb)

(1− ρb)2 − ρ(1− b)2e−µu(1−ρb2)/b
, (4.1)
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where
b = π(s) =

{
(s+ λ+ µ)−

[
(s+ λ+ µ)2 − 4λµ

]1/2
}
/(2λ) (4.2)

is the solution of the functional equation (2.2) in our special case.

Proof. The exponential distribution of the sizes of jobs B(x) = 1 − e−µx has the LST β(s) =
µ/(µ+ s). Taking it into account, the following quadratic equation follows from (2.2)

λπ(s)2 − (s+ λ+ µ)π(s) + µ = 0, (4.3)

the solution of which is given by (4.2) (we take the sign “minus” before the root since |π(s)| ≤ 1).
In our case, the differential equation for the function ψ(s, u) (see, for example, (3.17) in [1]) can

be rewritten to simpler form. It makes easier the conversion of (2.3) to the form

v(s, u) =
(1− ρ)e−u(s+λ)

ψ(s, u) + 1
µ
∂ψ(s,u)
∂u

. (4.4)

It remains to invert the formula (2.5) on complex argument q, which, in our case, can be repre-
sented as

ψ̃(s, q) =
q + s+ µ

(q − q1)(q − q2)
,

where q1 = −λb, q2 = −µ/b are two simple poles of the function ψ̃(s, q).
We shall use the inversion integral for carrying out the inversion procedure

ψ(s, u) =
1

2πi

∫ c+i∞

c−i∞
ψ̃(s, q)equdq (4.5)

where c ≥ 0. The integration in the complex q–plane is taken to be a straight–line integration
parallel to the imaginary axis and lying to the right of an abscissa of absolute convergence for
ψ̃(s, q). The standard means for this is to apply the Cauchy residue theorem to the integral in the
complex domain around a closed contour. We choose such contour in the form of a semicircle of
very large radius and the straight–line segment mentioned above. Since the function ψ̃(s, q) satisfies
to the conditions of Jordan’s lemma, the integral along the semicircle tends to zero as the radius
tends to infinity. Therefore the limit of the integral along the entire closed contour coincides with
the right–hand side of the inversion integral (4.5). In virtue of the Cauchy’s residue theorem we
have ∫

ψ̃(s, q)equdq = 2πi
2∑

n=1

res
[
ψ̃(s, qn)eqnu

]
.

It remains to calculate two residues of the function f(s, q) = ψ̃(s, q)equ (relatively q), which are
located at q1 = −λb and q2 = −µ/b. Since q1 and q2 are the simple poles of this function f(s, q),
then

resf(s, qn) = limq→qn(q − qn)f(s, qn).

Hence resf(s,−λb) = (s+µ−λb)exp(−λbu)/(−λb+µ/b) and also resf(s,−µ/b) = (s+µ−µ/b)
exp(−µu/b)/(λb− µ/b). It leads to

ψ(s, u) =
[s+ µ(1− ρb)]e−λbu − [s− µ(1− b)/b]e−µu/b

µ(1− ρb2)/b
.

Note that
∂ψ(s, u)
∂u

=
−[s+ µ(1− ρb)]λbe−λbu + [s− µ(1− b)/b]µe−µu/b/b

µ(1− ρb2)/b
.
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The substitution of two last equalities into (4.4) leads to the assertion (4.1). ut
The equality (4.1) coincides with the classical result in [4] (1970) (see also [5, Chapter 4]).

The method of analysis in [4] is based on birth and death processes for description of the service
process, technically, it is rather cumbersome (for example, it requires solution of first–order partial
differential equations) and it is not suitable for the analysis of more general cases. This method
does not carry over into the M/G/1—EPS queue.

Remark 41. Sengupta and Jagerman [7] found an alternative expression for the LST of the
distribution of the sojourn time conditioned only on the number of jobs seen upon arrival.

Now the formula for the variance of V (u) (see (3.20) in [1]) reduces to the form

Var[V (u)] =
2ρu

µ(1− ρ)3
− 2ρ
µ2(1− ρ)4

[
1− e−µu(1−ρ)

]
. (4.6)

5. CONCLUSION

We gave the details of the derivations of two important corollaries of Theorem 4 [1] and Theorem
3.2 [2].

REFERENCES

1. Yashkov S.F. A derivation of response time distribution for an M/G/1 processor-sharing queue. Probl.
of Control and Information Theory, 1983, vol. 12, no. 2, pp. 133–148.

2. Schassberger R. A new approach to the M/G/1 processor–sharing queue. Adv. Appl. Prob., 1984, vol.
16, no. 1, pp. 202–213.

3. Yashkov S.F. Analysis of Queues in Computers (in Russian with English Summary). Moscow: Radio i
Svyaz, 1989 (review in Mathematics and Computers in Simulation, 1991, vol. 33, no. 2, pp. 177–178).

4. Coffman E.G., Muntz R. and Trotter H. Waiting time distributions for processor–sharing systems. J.
Assoc. Comput. Mach., 1970, vol. 17, no. 1, pp. 123–130.

5. Kleinrock L. Queueing Systems. New-York: Wiley, 1976, vol. 2. Russian edition: Kleinrock L. Computer
systems with Queues. Moscow: Mir, 1979.

6. Yashkov S.F. Mathematical problems in the theory of shared-processor systems. In: Itogi Nauki i
Tekhniki. Ser.: Probability Theory. Moscow: VINITI, 1990, vol. 29, pp. 3–82 (in Russian). Engl. edi-
tion: J. of Soviet Mathematics, 1992, vol. 58, no. 2, pp. 101–147.

7. Sengupta B. and Jagerman D. A conditional response time of the M/M/1 processor–sharing queue.
AT&T Techn. J., 1985, vol. 64, no. 2, pp. 409–421.

This paper was recommended for publication by V.I.Venets, a member of the Editorial Board

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 6 � 3 2006


