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Abstract—Here is given the theorem concerning the light–tail behaviour of the (conditional)
sojourn time in the M/G/1 queue with egalitarian processor sharing.

1. INTRODUCTION

In [1] we succeeded in analyzing the M/G/1 queue with egalitarian processor sharing (EPS). The
tail behaviour of the sojourn time variance for a job of a given size was investigated at first in [2].
The analysis of [2] is extended in [3] where the novel result is obtained concerning an exponential
asymptotics of the stationary sojourn time. The goal of this note is to present some version of this
result which has a definite interest.

2. PRELIMINARIES AND THE RESULT

We consider the M/G/1—EPS queue with an arrival rate λ and processing time distribution
B(x) with B(0+) = 0 and the Laplace–Stieltjes transform (LST) β(s) =

∫ +∞
0− e−sxdB(x). We

require that B(·) has a finite first moment β1 < ∞, and ρ = λβ1 < 1. There is no overt queueing
in the EPS queue because all, say n jobs present in the processor simultaneously receive service at
1/n times the rate given to a single job. LetV (u) be the stationary sojourn time of a job whose size
is u time units. We shall also assume that the moment generating function of B(·) exists, that is,
β(−s) < ∞. In other words, B(·) has a light tail.

One of the direct corollaries of main theorem of [1] is the following decomposition of the random
variable V (u)

V (u) d= D(u) +
L∑

i=1

Φi(u),

where L is the number of jobs in the system (distributed geometrically), and Φi(u) coincides with
Φ(xi, u) after removing the condition on the residual size FB = xi of i–th job (that is, after averaging
on dFB(x) = β−1

1 (1−B(x))dx). The random variable Φ(u) has the distribution Φ(x|u) =

P(Φ(u) ≤ x|B = u). Besides, D(u) d= Φ(xi, u) for xi ≥ u, and D(u) and Φi(u), i = 1, . . . , L are
independent each from other. Then

P

(
L∑

i=1

Φi(u) > x

)
= (1− ρ)

∞∑
n=1

ρn [1− Φn∗(x|u)] ,
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where the distributions of the components were deduced in [1] (in terms of the LSTs or, partially,
in terms of the double LST), and Φn∗(x|u) is n–fold convolution of the distribution Φ(x|u) with
itself.

Now we refine the the condition β(−s) < ∞ for some s > 0 by the following way:
(i) there exists a constant θ(u) > 0 (the Lundberg exponent) such that

E
[
eθ(u)Φ(u)

]
= ρ−1, (2.1)

(ii) besides, there exists a constant C(u) such that

C(u) = ρ

∫ ∞

0
xeθ(u)xdΦ(x|u) < ∞. (2.2)

If the conditions (2.1) and (2.2) are valid, then the following theorem from [3] holds:

Theorem 1.
P(V (u) > x) ∼ C1(u)e−θ(u)x, x →∞, (2.3)

where

C1(u) =
(1− ρ)E

[
eθ(u)D(u)

]
[C(u)θ(u)]

. (2.4)

Here θ(u) is the solution of the equation (2.1) (see the condition (i)). A sufficient condition of the
existence of the solution follows from the inequality

ρ−1 < E
[
es1Φ(u)

]
< ∞.

If β1 = 1, then such sufficient condition can be represented as

1
E
[
es2(1,u)(u∧FB)

] < ρ.

ut

Theorem 1 has simpler forms in the special cases (the M/Hk/1—EPS queue, the M/Ek/1—EPS
queue, etc.). For example, the constant C1(u) in (2.4) reduces to the form

C1(1) = [(1− λ)(λ− θ(1)]/[2λ(1− λ)− θ(1)λ(2− λ)]

in the case of the M/D/1—EPS system for which β(s) = e−su and u = 1. Here θ(1) is unique
positive solution of an equation to which the equation (2.1) is reduced:[

λ(λ− s) + s− seλ−s
]
/
[
(λ− s)(λ− seλ−s)

]
= λ−1

.
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