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Abstract—This paper is concerned with the study of a discrete-time single-server retrial queue
with geometrical interarrival times and a phase-type service process. We analyse the underlying
Markov chain. An iterative algorithm to calculate the stationary distribution of Markov chain
is given. By using the Fast Fourier Transform we obtain numerical examples that give the
probability distribution of the number of customers in the orbit related to the specific phase in
which the service process is.

1. INTRODUCTION

Retrial queueing systems arise naturally in areas such as telephone and computer communication
systems. Interested readers can find comprehensive reviews in Falin [10] and Yang and Templeton
[22], and a good collection on bibliographical references in [1, 2]. The early work on retrial queues
was concentrated on the continuous case, but Yang and Li [21] extended the study to the discrete-
time systems. Although the actual literature about continuous-time retrial queues is very large,
only a few numbers of papers [3, 4, 5, 6, 9, 13, 14, 15, 18, 21] have recently appeared on discrete-time
queueing systems. Indeed, the growing interest in the analysis of discrete-time retrial queues has
been motivated by its applications to the field of computer and communications [8, 20].

The purpose of the present work is to analyse the Geo/PH/1 retrial queue. This system is a
special case of the Geo/G/1 retrial queue studied by Yang and Li [21], but in our case the compu-
tational procedure is considerably simplified and using the methods provided by the Fast Fourier
Transform (FFT) we are able to obtain numerical examples that give the probability distribution
of the number of customers in the orbit related to a specific phase in the service process.

The rest of the paper is organized as follows. The next section gives a description of the math-
ematical model. In section 3, we provide a complete study of the Markov chain and, finally, in
section 4 some numerical examples are presented.

2. THE MATHEMATICAL MODEL

We consider a discrete-time retrial queueing system in which the time axis is divided into equal
intervals, called slots, and where all queueing activities (arrivals and departures) take place at the
slot boundaries. For mathematical clarity, we assume that departures occur in the interval (n−, n)
and (external or repeated) arrivals occur in the interval (n, n+) , that is, departures occur at the
moment immediately before the slot boundaries and arrivals occur at the moment immediately
after the slot boundaries.
1 This work was partially supported by the russian foundation for basic research (GRANT No 06-07-89056) and by

the MEC (National Board Programme) through the proyect MTM2005-01248.
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External customers arrive according to a Bernoulli process with parameter a , i.e., a is the
probability that an arrival takes place in a slot. If ξ is the random variable of the number of slots
between two consecutive arrivals, we have

P [ξ = k] = āk−1 a , k ≥ 1,

where ā = 1− a is the probability that an arrival does not occur in a slot.
If, upon arrival, the server is idle, the service of the arriving customer begins immediately;

otherwise, if the arriving customer finds the server busy, he leaves the service area and joins a group
of blocked customers called orbit in order to get his service some time later. The time between two
successive attempts by the same customer is ruled by a geometrical law with probability 1−r , where
r is the probability that a repeated customer does not make a retrial in a slot. The retrial process of
a repeated customer finishes only if, upon a particular attempt, the server is idle, and the repeated
customer is chosen for service among all other repeated customers who are trying for service at that
time. The service time of each customer is ruled by a discrete phase-type distribution described by
an irreducible PH-representation (~β,B) of order m, where the matrix Im −B is non-singular [16].
The components of the m-dimensional column vector ~β are non-negative and satisfy the relation∑m

j=1 βj = 1 , and the elements of the matrix B are also non-negative and verify
∑m

j=1Bij ≤ 1 and∑m
j=1Bij < 1 for at least one i, i = 1, . . . ,m. If the random variable τ represents the service time

of a customer, we have
P [τ = k] = ~βT Bk−1~b , k ≥ 1

where ~b = (Im − B)~1 and ~1 is a column vector of ones. The corresponding probability generating
function is given by

P (z) =
∞∑

k=1

P [τ = k] zk = z ~βT (Im − z B)−1~b

with factorial moments of order k :

M(τ)k = k! ~βT Bk−1 (Im −B)−k ~1 , k ≥ 1 .

It is assumed that the interarrival times, the retrial times and the service times are mutually
independent. To avoid trivial cases, it is also supposed 0 < a < 1 and 0 ≤ r < 1 . The traffic
intensity is given by ρ = aM(τ)1 .

3. THE MARKOV CHAIN

At time n+, the system can be described by the Markov process {Xn, n ≥ 1} with Xn =
(Cn,Hn, Nn), where Cn denotes the server state (0 or 1 according to the server is free or busy
respectively). If Cn = 1, Hn represents the phase of the service process at time n and Nn the
number of customers in the orbit. If Cn = 0, Hn is not taken into consideration.

It can be shown that {(Cn,Hn, Nn) : n ≥ 1} is a Markov chain whose state space is

χ = {(0, k) : k ≥ 0 ; (1, i, k) : i = 1, . . . ,m , k ≥ 0}.

Our objective is to find the stationary distribution:

π0,k = lim
n→∞

P [Cn = 0 , Nn = k] ; k ≥ 0,

π1,i,k = lim
n→∞

P [Cn = 1 , Hn = i , Nn = k] ; i = 1, . . . ,m , k ≥ 0.
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The one-step transition probabilities are given by the formulae:

p(0,k),(0,k) = ā rk,

p(1,j,k),(0,k) = bj ā r
k , j = 1, . . . ,m,

p(0,k),(1,i,k) = a βi,

p(0,k+1),(1,i,k) = ā (1− rk+1)βi,

p(1,j,k−1),(1,i,k) = Bji a , j = 1, . . . ,m , k ≥ 1,
p(1,j,k),(1,i,k) = Bji ā+ bj a βi , j = 1, . . . ,m,

p(1,j,k+1),(1,i,k) = bj ā (1− rk+1)βi , j = 1, . . . ,m,

where ā = 1− a.
The system of equilibrium equations for the stationary distribution is

π0,k = ā rk π0,k + ā rk ~πT
1,k
~b , k ≥ 0 , (1)

~πT
1,k = a ~βT π0,k + ā

(
1− rk+1

)
~βT π0,k+1 + (1− δ0,k) a~πT

1,k−1B +

+~πT
1,k (ā B + a~b ~βT ) + ā

(
1− rk+1

)
~πT

1,k+1
~b ~βT , k ≥ 0 , (2)

where ~πT
1,k = (π1,1,k, π1,2,k, . . . , π1,m,k) . The normalizing condition is:

∞∑
k=0

π0,k +
∞∑

k=0

~πT
1,k
~1 = 1 .

In order to solve Eqs. (1)–(2), we introduce the generating functions:

ϕ0(z) =
∞∑

k=0

π0,k z
k ,

~ϕT
1 (z) =

∞∑
k=0

~πT
1,k z

k .

Multiplying Eqs. (1)–(2) by zk and summing over k , these equations become:

ϕ0(z) = ā ϕ0(r z) + ā ~ϕT
1 (r z)~b , (3)

~ϕT
1 (z) =

ā+ a z

z
~βT ϕ0(z) + (ā+ a z) ~ϕT

1 (z)B +
ā+ a z

z
~ϕT

1 (z)~b ~βT −

− ā
z
~βT

[
ϕ0(r z) + ~ϕT

1 (r z)~b
]
. (4)

By substituting Eq. (3) into Eq. (4) we get

~ϕT
1 (z)

[
Im − (ā+ a z)

(
B +

1
z
~b ~βT

)]
=
a (z − 1)

z
~βT ϕ0(z) . (5)

For simplicity we introduce the following notations:

C(z) = Im − (ā+ a z)(B +
1
z
~b ~βT ),

B(z) = Im − (ā+ a z)B,

~b(z) =
ā+ a z

z
~b.
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Therefore,
C(z) = B(z)−~b(z) ~βT .

In the next lemma we proceed to study the invertibility of the matrix C(z).

Lemma 1. If ρ ≤ 1 and 0 < z < 1 , the matrix C(z) = B(z)−~b(z) ~βT is invertible and its inverse
is given by:

A(z) = [B(z)−~b(z) ~βT ]−1 = [B(z)]−1 +
[B(z)]−1~b(z) ~βT [B(z)]−1

1− α(z)
,

where α(z) = βT [B(z)]−1~b(z).

Proof. Firstly, we point out that for 0 ≤ z ≤ 1 is 0 ≤ ā + a z ≤ 1 and consequently [B(z)]−1

exists.
Secondly, we need to prove that the equation

α(z)− 1 = 0 (6)

has no solutions in (0, 1) if and only if ρ ≤ 1 . In order to do that we observe that Eq. (6) is
equivalent to equation:

z − P (ā+ a z) = 0. (7)

Let us define the functions f1(z) = z and f2(z) = P (ā+ a z) . By the convexity property of f2(z) ,
the existence of solutions of Eq. (7) depends on the behaviour of the derivative of f2(z) in z = 1 :

f ′2(1) = aP ′(1) = aM(τ)1 = ρ .

If ρ ≤ 1 , Eq. (7) does not have any solution in (0, 1) . On the other hand, if ρ > 1 , there exists a
solution of Eq. (7) in the open interval (0, 1) . Thus we obtain that Eq. (7) has no solution in (0, 1)
if and only if ρ ≤ 1 .

Finally, it is straigthforward to show that

C(z)A(z) = Im.

Combining Eq. (5) together with Lemma 1 leads to:

~ϕT
1 (z) =

a (z − 1)
z

~βT A(z)ϕ0(z), z ∈ (0, 1). (8)

Note that although the matrix C(z) is not defined for z = 0 and C(1) is not inversible, the values
of ~ϕT

1 (z) in z = 0 and z = 1 can be found by means of (8) by continuity.
To find out ϕ0(z) we substitute ~ϕT

1 (r z) into Eq. (3) getting

ϕ0(z) = ā [1 +
a (r z − 1)

r z
~βT A(r z)~b]ϕ0(r z),

thats is

ϕ0(z) = G(r z)ϕ0(r z), (9)

where

G(z) = ā [1 +
a (z − 1)

z
~βT A(z)~b].
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Recursively applying (9) leads to

ϕ0(z) = ϕ0(0)
∞∏

k=1

G
(
rk z

)
. (10)

In order to find ϕ0(0) we will put z = 1 in (10) obtaining

ϕ0(0) = ϕ0(1) {
∞∏

k=1

G
(
rk z

)
}−1. (11)

The value of ϕ0(1) can be obtained the normalization condition:

ϕ0(1) + ~ϕ1
T (1)~1 = 1. (12)

Multilying both sides of Eq. (8) by ~1 and putting z = 1 we get

~ϕ1
T (1)~1 = aλϕ0(1) (13)

where

λ = lim
z→1

~βT A(z) (z − 1).

From (12) and (13) we have

ϕ0(1) =
1

1 + aλ
. (14)

To obtain λ we first observe using (6) that

~βT A(z)~1 =
~βT [B(z)]−1~1

1− α(z)
.

Define γ(z) = ~βT [B(z)]−1~1 = ~βT [Im − (ā+ a z)B]−1~1. Then we have

~βT A(z)~1 =
γ(z)

1− α(z)
.

Therefore
λ = lim

z→1

γ(z) (z − 1)
1− α(z)

.

Taking into account that
lim
z→1

γ(z) = E[τ ] 6= 0

and by applying L’Hopital rule

lim
z→1

z − 1
1− α(z)

=
1

1− ρ

we get

λ = lim
z→1

γ(z) (z − 1)
1− α(z)

=
E[τ ]
1− ρ

.

Thus we find out the value of the unknown constant ϕ0(1):

ϕ0(1) = 1− ρ.

The previous results can be summarized in the following theorem:
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Theorem 1. The Markov chain {(Cn,Hn, Nn) : n ≥ 1} is ergodic if and only if ρ ≤ 1 and its
stationary distribution has the following generating functions

ϕ0(z) = (1− ρ)
∞∏

k=1

G
(
rk z

)
G (rk)

~ϕT
1 (z) =

a (z − 1)
z

~βT A(z)ϕ0(z),

where

G(z) = ā [1 +
a (z − 1)

z
~βT A(z)~b].

The stationary distribution of the server state is given by ϕ0(1) = 1 − ρ and ~ϕT
1 (1) = a ~βT (Im −

B)−1 , and does not depend on the retrial parameter r .

Corollary 1.(1) The marginal generating function of the number of customers in the orbit when
the server is busy is given by:

~ϕT
1 (z)~1 =

1− P (ā+ a z)
P (ā+ a z)− z

ϕ0(z) .

(2) The probability generating function of the number of customers in the orbit is given by:

ψ(z) =
1− z

P (ā+ a z)− z
ϕ0(z) .

(3) The probability generating function of the number of customers in the system is given by:

φ(z) =
(1− z)P (ā+ a z)
P (ā+ a z)− z

ϕ0(z) .

(4) The mean number of customers in the orbit is given by:

E[N ] =
a2M(τ)2
2 (1− ρ)

+
∞∑

k=1

G′
(
rk

)
G (rk)

rk .

(5) The mean number of customers in the system is given by E[L] = E[N ] + ρ .
(6) The mean time a customer spends in the system (including the service time) is given by W =

E[L]/a .

As was expected, the results obtained in Corollary 1 agree with [21].

4. NUMERICAL WORK

This section presents some numerical results analysing the influence of the service time distri-
bution on the stationary probabilities {π0,k : k ≥ 0; π1,i,k : i = 1, . . . ,m , k ≥ 0} . To obtain
these outcomes, we carry out the numerical inversion of the generating functions ϕ0(z) and ~ϕT

1 (z)
using the FFT method. The FFT method is an appropriate tool to calculate the probability distri-
bution from its generating function in case an explicit expression can be given for this generating
function [19].

Throughout this section the arrival and retrial rates are assumed to be equal to a = 0.1 and
r = 0.6 , respectively. We present three tables, which correspond to the following PH-distributions:
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PH1:~β =

0.3
0.1
0.6

 , B =

0.2 0.3 0.2
0.5 0.3 0
0.3 0 0.4

 ;

PH2:~β =

1
0
0

 , B =

0.5 0.5 0
0 0.5 0.5
0 0 0.5

 ;

PH3:~β =

0.3
0.4
0.3

 , B =

0.2 0 0
0 0.5 0
0 0 0.7

 .

Of course, the parametric values have been chosen verifying the ergodicity condition. The
columns of each table provide us the probabilities of the orbit size in the different states of the
server. In all the tables, we observe that the probabilities π0,k and π1,i,k, i = 1, 2, 3, decrease as
function of k , that is, they decrease as more customers are in the orbit. Of course, the parametric
values have been chosen verifying the ergodicity condition. The columns of each table provide us
the

π0,k π1,1,k π1,2,k π1,3,k

k = 0 6.1221 · 10−1 9.0899 · 10−2 4.5320 · 10−2 1.0563 · 10−1

k = 1 2.6074 · 10−2 3.2666 · 10−2 1.9139 · 10−2 2.8614 · 10−2

k = 2 3.2741 · 10−3 1.0241 · 10−2 6.3022 · 10−3 8.3280 · 10−3

k = 3 4.9702 · 10−4 3.1076 · 10−3 1.9389 · 10−3 2.4654 · 10−3

k = 4 8.1182 · 10−5 9.2992 · 10−4 5.8318 · 10−4 7.3071 · 10−4

k = 5 1.3735 · 10−5 2.7638 · 10−4 1.7372 · 10−4 2.1622 · 10−4

k = 6 2.3677 · 10−6 8.1844 · 10−5 5.1503 · 10−5 6.3881 · 10−5

k = 7 4.1244 · 10−7 2.4186 · 10−5 1.5230 · 10−5 1.8854 · 10−5

k = 8 7.2282 · 10−8 7.1390 · 10−6 4.4968 · 10−6 5.5610 · 10−6

k = 9 1.2713 · 10−8 2.1057 · 10−6 1.3267 · 10−6 1.6396 · 10−6

k = 10 2.2405 · 10−9 6.2083 · 10−7 3.9119 · 10−7 4.8328 · 10−7

k ≥ 11 4.8018 · 10−10 2.5946 · 10−7 1.6351 · 10−7 2.0194 · 10−7

Table 1. PH1.

π0,k π1,1,k π1,2,k π1,3,k

k = 0 3.5210 · 10−1 1.1688 · 10−1 9.5633 · 10−2 7.8245 · 10−2

k = 1 3.7746 · 10−2 4.8839 · 10−2 5.9279 · 10−2 6.4308 · 10−2

k = 2 7.8903 · 10−3 2.0388 · 10−2 2.6510 · 10−2 3.2925 · 10−2

k = 3 1.7456 · 10−3 8.3303 · 10−3 1.1079 · 10−2 1.4468 · 10−2

k = 4 3.9671 · 10−4 3.3503 · 10−3 4.5057 · 10−3 6.0089 · 10−3

k = 5 9.1571 · 10−5 1.3349 · 10−3 1.8063 · 10−3 2.4338 · 10−3

k = 6 2.1328 · 10−5 5.2895 · 10−4 7.1834 · 10−4 9.7320 · 10−4

k = 7 4.9936 · 10−6 2.0894 · 10−4 2.8434 · 10−4 3.8642 · 10−4

k = 8 1.1727 · 10−6 8.2378 · 10−5 1.1224 · 10−4 1.5281 · 10−4

k = 9 2.7592 · 10−7 3.2443 · 10−5 4.4237 · 10−5 6.0290 · 10−5

k = 10 6.4986 · 10−8 1.2768 · 10−5 1.7418 · 10−5 2.3753 · 10−5

k ≥ 11 2.0041 · 10−8 8.2792 · 10−6 1.1298 · 10−5 1.5415 · 10−5

Table 2. PH2.
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π0,k π1,1,k π1,2,k π1,3,k

k = 0 7.6711 · 10−1 3.4665 · 10−2 6.8910 · 10−2 7.6825 · 10−2

k = 1 1.4275 · 10−2 2.4686 · 10−3 9.4912 · 10−3 1.8132 · 10−2

k = 2 1.0086 · 10−3 3.0252 · 10−4 1.3445 · 10−3 3.9673 · 10−3

k = 3 9.6701 · 10−5 5.1523 · 10−5 2.0998 · 10−4 8.4841 · 10−4

k = 4 1.0559 · 10−5 9.9065 · 10−6 3.6284 · 10−5 1.7968 · 10−4

k = 5 1.2302 · 10−6 1.9933 · 10−6 6.7807 · 10−6 3.7876 · 10−5

k = 6 1.4830 · 10−7 4.0918 · 10−7 1.3332 · 10−6 7.9647 · 10−6

k = 7 1.8212 · 10−8 8.4824 · 10−8 2.6998 · 10−7 1.6727 · 10−6

k = 8 2.2598 · 10−9 1.7674 · 10−8 5.5565 · 10−8 3.5104 · 10−7

k = 9 2.8204 · 10−10 3.6927 · 10−9 1.1535 · 10−8 7.3642 · 10−8

k = 10 3.5318 · 10−11 7.7271 · 10−10 2.4057 · 10−9 1.5445 · 10−8

k ≥ 11 5.0666 · 10−12 2.0472 · 10−10 6.3610 · 10−10 4.0983 · 10−9

Table 3. PH3.
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