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Abstract—Let us consider two-sorted intuitionistic set theory ZFI2 with sort 0 for natural
numbers and sort 1 for sets. We shall show that well-known Church rule with parameters of
sort 1 is admissible in ZFI2 in some rather strong sense, and get from this point the admissibility
of Markov rule with all parameters in ZFI2, and also DP and numerical EP with set parameters
for it in the same sense.

1. INTRODUCTION

Let ZFI2 be usual first order intuitionistic Zermelo-Fraenkel set theory in two-sorted language
(where sort 0 - for natural numbers, and sort 1 - for sets) which contains functional symbols for
all primitive recursive functions (p.r.f.), and predicate symbols =0 for equality of natural numbers,
∈0 for membership of natural to set and ∈1 for membership of set to set. Axioms and rules of this
system are: all usual axioms and rules of intuitionistic predicate logic (HPC), all usual axioms of
intuitionistic arithmetic (HA) for variables of sort 0, and all usual axioms and schemes of Zermelo-
Fraenkel system for variables of sort 1, namely axioms Extensionality (Ext), Pair (Pair), Union
(Un), Infinity (Inf), Power set (Pow), and schemes Separation (Sep), Transfinite Induction (TI)
as Regularity and Collection (Coll) as Substitution.

Formal notation of all schemes and axioms is set below, in section 2.3.
It is well-known that ZFI2 have important effectivity properties: disjunction property (DP),

numerical existence property(EP),and also that the Markov rule is admissible in it. Such collection
of properties shows that it is a sufficiently constructive theory.

On the other hand, a lot of usual informal mathematical reasons may be formalized in it, so, we
can formalize in ZFI2 and decide a lot of informal problems about transformation of some classical
proof into intuitionistical, and extraction of some description of a mathematical object from some
proof of its existence. The well-known example of result of this kind is the well-known theorem of
Lyubetsky [5]. The below problems were formulated and discussed as hypotheses in lecture courses
given by V. Lyubetsky on Intuitionistic set theory at Moscow State University in spring term of
1995.

In this paper we prove the admissibility of Curch rule (CR)in ZFI2 with set parameters, and
show how the admissibility of Markov rule (MR) with all parameters can be extracted from it.

Short review

The section 1 contains some necessary introduction.
In section 2 we introduce formalized realizability eQϕ which generalizes on the set theoretical

level well-known q-realizability from Friedman [2], after that we consider the theory ZFI2c which
is obtained from ZFI2 by adding of countable set of new constants of sort 1, prove the correctness
of this theory w.r.t. our realizabity.
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In section 3 we get from this theorem the following properties of effectivity for ZFI2:
1. Disjunction property (DP) with parameters of sort 1;
2. Numerical existence property with parameters of sort 1;
3. Admissibility of Church rule with parameters of sort 1;
4. Admissibility of Markov rule with parameters of any sorts.
So, we can conclude that ZFI2 is an effective theory wich formalizes “effective mathematics.”
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2. THE Q-REALIZABILITY FOR SET THEORY

We shall use all usual set-theoretical notations (see f.e. [1]), and elemetary recursion theory
fomalized in HA (see [3]).

2.1. Preliminaries

On definable constants

We can note at beginnig that it can add to language of theory ZFI2 each definable constant.
More exactly, let T is a theory in our language, and the theory T ∗ is obtained by adding to T some
set of definable constants. Then if Church rule is admissible in T ∗ (with or without parameters)
then it is admsissible in T , too.

On free constants

Now we add to language of theory ZFI2 a countable set of new constants of sort 1 (”free
constants”). Let, again, T be a theory in the language of ZFI2, and let the theory T c be obtained
from T by adding of all these free constants. It is well-know that T c is conservative over T .

Let T be a simple extension of ZFI2. We claim that if Church rule without parameters is
admisible in T c then Church rule with parameters of sort 1 is admissible in T . Indeed, let ϕ be
some formula of the language of T c without number parameters. Let also T ` ∀x0∃y0ϕ(x; y;−→p ),
where −→p is a list of all parameters of this formula. Take a proof of ∀x0∃y0ϕ(x; y−→p ) in T and replace
in this proof all parameters from −→p to free constasnts c1, . . . , cn. Clearly, it obtains a new proof
in T c of the formula ∀x0∃y0ϕ(x; y;−→c ), where −→c is a list of all used new constants. This formula
already does not contain any parameters, and admissibility of Church rule without parameters for
T c gives us the natural number ρ such that we have:

T ` ∀x0∃y0[y = {ρ}(x). ∧ .ϕ(x; y;−→c )].

Let us take any proof of this formula and replace each free constant to new parameter. Clearly, we
obtain a proof of the formula

T ` ∀x0∃y0[y = {ρ}(x). ∧ .ϕ(x; y;−→p )]

in the theory T . Of course, this remark have a completely general kind. We shall use it below
to demonstrate also the admissibility of Markov rule with all parameters. We could use it to
redemonstrate for ZFI2− DP and EP with set parameters and also the uniformization rule (UR)
with set parameters for this theory. (See our next paper about that).
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2.2. Universum ∆

In this subsection we define universum ∆ and prove some its useful properties.

Definition 1. The Von Neumann universum Π is defined as usually:

Π =
⋃

α∈On

Vα, where

Vα = ω ∪
⋃
β<α

P(Vβ).

Definition 2. Let us define the relation y ∈∗ x as (∃n ∈ ω)[〈n, y〉 ∈ x]. Also we define “the
*-rank of set x” as an ordinal rk∗(x) �

⋃
{rk∗(y) + 1|y ∈∗ x}.

Remark 1. If y ∈∗ x then rk∗(y) < rk∗(x).

Definition 3. Let us define surjection F : x 7→◦
x from class V onto class ∆. It is an identity

function on naturals, and on sets we define:

F(x) =
◦
x= {〈n,

◦
y〉|(〈n, y〉 ∈ x) ∧ (x ∈ ∆α)} ∪ {〈n, d〉|(〈n, d〉 ∈ x) ∧ (x ∈ ∆α)},

where α = rk∗(x).

Definition 4. Now let us define the relations x extα h (where x is a set, h is a natural, α is a
ordinal), y∼

−→
h
γ z, where

−→
h is a quadruple 〈h1, h2, h3, h4〉 of natural numbers, sets ∆α and universum

∆ by transfinite induction as follows:

x extα h � (∃β < α)x extβ h ∨ [x ⊆ (ω × ω) ∪
⋃
β<α

(ω ×∆β)|(x satisfies (*))],

where (*) is the following condition for x: for all ordinals γ < α, for all
−→
h = 〈h1;h2;h3;h4〉, where

hi ∈ ω, for each natural n, and for all sets y, z

if y
−→
h∼
γ
z and 〈n;

◦
y〉 ∈ ◦

x then !{h}(n,
−→
h ) and 〈{h}(n,

−→
h );

◦
z〉 ∈ ◦

x .

Now let us define the relation of “effective equality of two sets y and z by the function h”:

y
−→
h∼
γ
z � (∃β < α)[y

−→
h∼
γ
z] ∨ [(y, z ∈ ∆α) ∧ (∀n, k, h, u)[(1) ∧ (2) ∧ (∗)]], where

(1) 〈n, k〉 ∈
◦
y ∧(k ∈ y) →!{h1}(n; k) ∧ 〈{h1}(n; k); k〉 ∈ ◦

z;
(2) 〈n, k〉 ∈ ◦

z ∧(k ∈ z) →!{h2}(n; k) ∧ 〈{h2}(n; k); k〉 ∈
◦
y;

(*) if for all β < α we have
◦
u extβ h then

(3) 〈n, ◦u〉 ∈
◦
y ∧(u ∈ y) →!{h3}(n;

−→
h ) ∧ 〈{h3}(n;

−→
h );

◦
u〉 ∈ ◦

z;
(4) 〈n, ◦u〉 ∈ ◦

z ∧(u ∈ z) →!{h4}(n;
−→
h ) ∧ 〈{h4}(n;

−→
h );

◦
u〉 ∈

◦
y.

After that we can define:

y∼
γ
z � (∃y)[y

−→
h∼
γ
z], and y∼ z � (∃γ)[y∼

γ
z].

Finitely, we can define:
∆α = {x|(∃h ∈ ω)[ x extα h ]}, and

∆ =
⋃
α

∆α.
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Lemma 1 (Properties of the function F : x 7→◦
x).

(i) For each set x we have:
◦
x∈ ∆

(ii) If x ∈ ∆ then
◦
x = x.

(iii) If x /∈ ∆ then
◦
x= ∅.

(iv ) F : x 7→◦
x is a surjection of Π onto ∆.

Lemma 2 (Properties of the class ∆). In ZFI2 the following properties are provable:

(i) The class ∆α is a set.
(ii) For each ordinals α < β we have ∆α ⊂ ∆β.
(iii) For all sets x, y ∈ ∆ and α ∈ On we have

(y ∈∗ x) ∧ (x ∈ ∆α) → (y ∈1 ∆α).

(iv) for each set x ∈ ∆ we have: x ∈ ∆rk∗(x)+1.

2.3. Definition of realizability

Recall that there is well known bijection j : ω×ω → ω as well two projections j1, j2 : ω×ω → ω
such that in HA we have j(j1u0; j2u0) = u0.

Now let us define our realizability by induction on comlexity of formula ϕ.

Definition 5. Namely, for each formula ϕ we define a new formula eQϕ with parameter e (of
sort 0) as well all parameters of formula ϕ.

1. If ϕ is t =0 s, then eQϕ is t =0 s .
2. If ϕ is t ∈0 x, where t is a valuated term of sort 0 and x is a set, then eQϕ is 〈e; t〉 ∈ ◦

x.

3. If ϕ is x ∈1 y, where x and y are sets, then eQϕ is 〈e; ◦x〉 ∈
◦
y .

4. If ϕ is ψ ∧ ϑ, then eQϕ is j1eQψ. ∧ .j2eQϑ .
5. If ϕ is ψ ∨ ϑ, then eQϕ is

[j1e = 0 → j2eQψ. ∧ .ψ]. ∧ .[j1 6= 0 → j2eQϑ. ∧ .ϑ].

6. If ϕ is ψ → ϑ, then eQϕ is ∀p[pQψ. ∧ .ψ →!{e}(p). ∧ .{e}(p) Qϑ] .
7. If ϕ is ∀u0ψ, then eQϕ is ∀d[!{e}(d). ∧ .{e}(d) Qψ(d)] .
8. If ϕ is ∃u0ψ, then eQϕ is j2eQψ(j1e). ∧ .ψ(j1e) .
9. If ϕ is ∀x1ψ, then eQϕ is ∀x1∀h[◦x .ext.h→!{e}(h) ∧ {e}(h) Qψ(x)] .

10. If ϕ is ∃x1ψ, then eQϕ is ∃x1[
◦
x .ext.j2e ∧ j1eQψ(x)] .

2.4. Correctness theorem

Theorem 1. If ZFI2c ` ϕ, where ϕ is a closed formula then for each derivation of ϕ in theory
ZFI2c there exists some effectively found number e such that ZFI2c ` eQϕ.

Proof. We only check four more difficult schemes: TI, Coll, Sep, and Ext.

1. Extensionality Axiom (Ext)

(∀x1∀y1∀z1)[(∀a0)(a ∈ x ≡ a ∈ y) ∧ (∀v1)((v ∈ x ≡ v ∈ y))] ∧ (x ∈ z) → (y ∈ z).
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Let us find a natural e such that ZFI2 ` eQExt. Reason in ZFI2. We need a natural e such that
we woud have: for all x1,hx, y1,hy,z1, and hz if

◦
x .ext.hx,

◦
y .ext.hy, and

◦
z .ext.hz then the number

e∗ := {{{e}(hx)}(hy)}(hz) is defined and realizes the formula

[(∀a0)(a ∈ x ≡ a ∈ y) ∧ (∀v1)((v ∈ x ≡ v ∈ y))] ∧ (x ∈ z) → (y ∈ z).

This means that if some natural p realizes the antecedent i.e. the formula

[(∀a0)(a ∈ x ≡ a ∈ y) ∧ (∀v1)((v ∈ x ≡ v ∈ y))] ∧ (x ∈ z),

and this formula is true then {e∗}(p) is defined and realizes the consequent, i.e. 〈{e∗}(p);
◦
y〉 ∈ ◦

z .
Let p realizes the antecedent of Ext. It means that p = ν(p1, p2, p3) and the following conditions
must be satisfied:

(a) p1 Q[(∀a0)(a ∈ x ≡ a ∈ y)], i.e. for all natural q the number {p1}(q) is defined and
realizes the formula (q ∈ x ≡ q ∈ y), i.e. {p1}(q) = j(p11; p12) and p11 Q[a ∈ x → a ∈ y], and
p12 Q(a ∈ y → a ∈ x). So, the condition (a) means:

(a1) for each natural number r if 〈r; q〉 ∈ ◦
x and q ∈0 x then {{p11}(q)}(r) is defined and

〈 {{p11}(q)}(r); q〉 ∈
◦
y .

(a2) for each natural number s if 〈s; q〉 ∈
◦
y and q ∈0 x then {{p12}(q)}(s) is defined and

〈 {{p12}(q)}(s); q〉 ∈
◦
x .

(b) p2 Q[∀v1)(v ∈ x ≡ v ∈ y)], i.e. for each set v, and for each natural hv if v.ext.hv then
{p2}(hv) is defined and realizes the formula (v ∈ x ≡ v ∈ y), i.e. {p2}(hv) = j(p21; p22), and
p21 Q(v ∈ x→ v ∈ y), and p22 Q(v ∈ y → v ∈ x).

So, the condition (b) means: for each set v , for each hv if v.ext.hv then

(b1) for each natural q if 〈q; ◦v〉 ∈ ◦
x and v ∈1 x then {p21}(q) is defined and 〈{p21}(q);

◦
v〉 ∈

◦
y .

(b2) for each natural number q if 〈q; ◦v〉 ∈
◦
y and v ∈1 y then {p22}(q) is defined and

〈{p22}(q);
◦
v〉 ∈ ◦

x .

(c) 〈p3;
◦
x〉 ∈ ◦

z . So, by our hypothesys, the conditions (a)-(c) are satisfied for our number p.

Then we have to find a natural number {e∗}(p) such that 〈{e∗}(p);
◦
y〉 ∈ ◦

z . Let us define:

{h1}(n, k) := {j1({p1}(k))}(n);

{h2}(n, k) := {j2({p1}(k))}(n);

{h3}(n, k) := {j1({p2}(k))}(n);

{h4}(n, k) := {j2({p2}(k))}(n);
−→
h = 〈h1, h2, h3, h4〉.

Let also rk∗(x) = α, and rk∗(z) = β. Since 〈p3;
◦
x〉 ∈ ◦

z, we have: α < β. Let also again:
x∗ := x∗1 ∪ x∗2, where we define: x∗1 := {z|(◦z∈∗ ◦x) ∧ z ∈ x}, x∗2 := {k ∈ ω|(k ∈∗ ◦x) ∧ k ∈0 x}. So, we
have by the conditions (a)-(b): x∗ = y∗. Therefore, rk∗(x) = rk∗(y) = α. So,we have:

x
−→
h∼
α
y, and α < β.
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But z.ext.hz, and rk(z) = β, so,the number {h3}(p3;hz) is defined and 〈{h3}(p3;hz);
◦
y〉 ∈ ◦

z . Let
{e∗}(p) := {h3}(p3;hz). Then e∗ realizes Ext. Indeed, if p realizes the antecedent of Ext then
p = ν(p1, p2, p3), where these pi satisfies the conditions (a)-(c). Then if x.ext.hx , y.ext.hy , and

z.ext.hz then {h3}(p3;hz) is defined and 〈{h3}(p3;hz);
◦
y〉 ∈ ◦

z, i.e. we have: {e∗}(p) is defined

and 〈{e∗}(p);
◦
y〉 ∈ ◦

z . The existence of such number e∗ it can be got from (formalized)recursion
theorem: for partially recursive term t(hx, hy, hz) � {h3}(p; I3

3 (hx;hy;hz)) there is a primitive
recursive term t1(hx;hy;hz) such that t1(hx;hy;hz) ∼ {h3}(p; I3

3 (hx;hy;hz)) ∼ {h3}(p ;hz)). There
is a number e such that {e}(hx;hy;hz) ∼ t1(hx;hy;hz). We have (even in HA):

{{e}(hx;hy;hz)}(p) ∼ {h3}(p ;hz).

2. Transfinite Induction (TI)

∀x1[(∀y ∈1 x)ϕ(y) → ϕ(x)] → ∀x1ϕ(x).

Let us find a natural number e such that eQTI, i.e. for each natural p if (∀x1)[(∀y ∈1 x)ϕ(y)]
and pQ∀x1[(∀y ∈1 x)ϕ(y) → ϕ(x)] then {e}(p) is defined and {e}(p) Q∀x1ϕ(x). By our definition
of “eQϕ” this signifies the following: if the following conditions are satisfied

( i) (∀x1)(∀hx ∈ ω)[
◦
x .ext.hx → {p}(hx) Q((∀y ∈1 x)ϕ(y) → ϕ(x))], and

(ii) (∀x1)[(∀y ∈1 x)ϕ(y) → ϕ(x)],

then !{e}(p) and for all set x and number hx if
◦
x .ext.hx then {e}(p) Qϕ(x).

Let us fix a number p such that the conditions (i) and (ii) are satisfied, and an arbitrary
x ∈1 Π , and some natural number hx , such that

◦
x .ext.hx .

The condition (i) means: for each natural number q if qQ(∀y ∈1 x)ϕ(y) and (∀y ∈1 x)ϕ(y) then
!{p}(q) and {p}(q) Qϕ(x). In the other words, this means that if (∀y ∈1 x)ϕ(y) , and if for each set

y, and for each number hy, such that
◦
y .ext.hy, we have: !{q}(hy) , and {q}(hy) Q[y ∈1 x→ ϕ(y)]

then !{p}(q) and {p}(q) Qϕ(x). Finitely, the condition (i) means: if for each set y and naturals

hy and s such that
◦
y .ext.hy , we have: 〈s;

◦
y〉 ∈◦x and y ∈1 x implies !{{q}(hy)}(s) and

{{q}(hy)}(s) Qϕ(y) then !{p}(q) and {p}(q) Qϕ(x).
The condition (ii) means: for each x1 ∈ Π we have: (∀y ∈1 x)ϕ(y).
Let

{I(p)}(h) ' {{e}(p)}(h) ' {{p}(h)}(u),

where {{u}(h)}(s) = {I(p)}(h).
It exists by the recursion theorem. If now we prove that uQ(∀y ∈1 x)ϕ(y) then we will

get by the choose of the number p that {{p}(hx)}(u), is defined, and {{p}(hx)}(u) Qϕ(x), i.e.

{I(p)}(hx) Qϕ(x). So, we have to show that for each y ∈1 x for each number hy such that
◦
y .ext.hy

we have:
{u}(hy) Q(y ∈1 x→ ϕ(y)),

i.e. for each natural s

if 〈s;
◦
y〉 ∈◦x and y ∈1 x then !{{u}(hy)}(s) and {{u}(hy)}(s) Qϕ(y).

But if y ∈1 x then rk(y) < rk(x), and by IH we have {I(p)}(hy) Qϕ(y), so {{u}(hy)}(s) Qϕ(y)
by the definition of the number u. Thus, uQ(∀y ∈1 x)ϕ(y), and consequently, !{{p}(hx)}(u) and
{{p}(hx)}(u) Qϕ(x), i.e. {I(p)}(hx) Qϕ(x). So, I(p) Q∀x1ϕ(x).
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3. Coll ∀z1[z ∈1 a→ ∃y1 ψ(z; y)] ∧ ∀v0[v ∈0 a→ ∃y1 ϕ(v; y)] →
→ ∃x1[(∀z ∈1 a)(∃y1 ∈ x)ψ(z; y) ∧ (∀v0 ∈0 a)(∃y1 ∈ x)ϕ(v; y).]

Let us find a natural number e such that eQColl. This means that if p realizes the antecedent of
Coll then {e}(p) realizes it’s consequent. Reason in our theory: fix any a ∈1 Π. Then if the following
conditions are satisfied:

1. j1pQ(∀z ∈1 a)(∃y1)ψ(z; y);
2. j2pQ(∀v ∈0 a)(∃y1)ϕ(v; y);
3. (∀z ∈1 a)(∃y1)ψ(z; y);
4. (∀v ∈0 a)(∃y1)ϕ(v; y);

then {e}(p) is defined and realizes the consequent of Coll.

The condition 1 means: for each set z and hz ∈ ω if
◦
z .ext.hz, then for each natural d if

〈d; ◦z〉 ∈◦a and z ∈1 a then !{{j1p}(hz)}(d) and for some y1 we have: {{j1p}(hz)}(d) = j(d1; d2), and
◦
y .ext.d2, and d1 Qψ(z; y).

The condition 2 means: for each naturals q and d we have: !{j2p}(d) and if 〈q; d〉 ∈◦a and d ∈0 a
then {{j2p}(d)}(q) is defined and realizes the formula ϕ(d; y) for some y1.

The conclusion of the formula eQColl means: {e}(p) = j(e1; e2) and there is some set x such
that:

(i)
◦
x .ext.e2, and

(ii) e1 = j(e11; e12)
(iii) e11 Q∀z1(. . . ), i.e. for each set z and each natural hz if z.ext.hz then !{e11}(hz), and for

each natural d if 〈d; ◦z〉 ∈◦a and z ∈1 a then !{{e11}(hz)}(d), {{e11}(hz)}(d) = j(d1; d2), and also

d1 = j(d11; d12), and for some set y we have:
◦
y .ext.d2, and 〈d11;

◦
y〉 ∈◦x, and d12 Qψ(z; y).

(iv) For each natural d it satisfies: !{e2}(d) and for each natural q we have: if 〈q; d〉 ∈◦a and
d ∈0 a then !{{e2}(d)}(q) and 〈j1{{e2}(d)}(q); d〉 ∈

◦
x, and j1{{e2}(d)}(q) Qϕ(d; y).

By the schema Collection it follows from conditions 1 and 2 that there is some set S such that
the following conditions are satisfied:

– for each natural d and set z, and hz if
◦
z .ext.hz then if 〈d; ◦z〉 ∈◦a and z ∈ a then {{j1p}(hz)}(d)

is defined and for some y ∈1 S it satisfies: {{j1p}(hz)}(d) Qψ(z; y)
– for each natural d we have: !{j2p}(d), and if for some natural s 〈q; s〉 ∈◦a and s ∈0 a then

{{j2p}(d)}(q) is defined and realize the formula ϕ(d; y) for some y1 ∈ S. Let x0 � ω×{
◦
y |y ∈1 S}.

Clearly, x0 ∈ ∆, so,
◦
x0= x0.

Let us define functions {e1} and {e2}.

* If for some natural d and z1 it satisfies: 〈d; ◦z〉 ∈◦a, and z ∈1 a then !{{j1p}(hz)}(d), and for
some y1 we have: {{j1p}(hz)}(d) Qψ(z; y).
Now let us define: {{j1p}(hz)}(d) = d , and j2{e1}(d) = {j2p}(d), i.e. {e1}(d) = j(d; {j2p}(d).
In this case we have: 〈j1{e1}(d);

◦
y〉 ∈◦x, and j2{e1}(d) Qψ(y; z), i.e. {e1}(d) = j(d1, d2), and

〈d1;
◦
y〉 ∈◦x, and d2 Qψ(y; z).

* For each natural d and s we have: !{{e2}(d)}, and it is follows from 〈q; s〉 ∈◦a and s ∈0 a
that {{j2p}(d)}(q) is defined and realizes the formula ϕ(d; y) for some y1 ∈ S. Let us define:
{{e2}(d)}(q) = j(q1; q2) where q1 = q and q2 = {{j2p}(d)}(q). Then we get:

q2 Qϕ(d; y), and 〈q1; d〉 ∈
◦
x, i.e. j2{{e2}(d)}(q) Qϕ(d; y).
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So, the conditions (i)-(iv) are satisfied, and eQColl.

4. Sep ∀x1∃y1[∀u0(u ∈0 y ≡ (u ∈0 x) ∧ ϕ(u)) ∧ ∀z1(z ∈1 y ≡ (z ∈1 x) ∧ ψ(z))].

Let us find a natural e such that eQSep. Fix an arbitrary x1, and number hx such that
◦
x .ext.hx.

Then it must be: {e}(hx) is defined and realizes the formula:

∃y1[∀u0(u ∈0 y ≡ (u ∈0 x) ∧ ϕ(u)) ∧ ∀z1(z ∈1 y ≡ (z ∈1 x) ∧ ψ(z))].

By definition this means that there is some set y such that the following conditions must be
satified:

0) {e}(hx) = j(e∗; e∗∗);

1)
◦
y .ext.e∗∗.

2) e∗ Q[∀u0(u ∈0 y ≡ (u ∈0 x) ∧ ϕ(u)) ∧ ∀z1(z ∈1 y ≡ (z ∈1 x) ∧ ψ(z))].
2.0) e∗ = j(e1; e2);
2.1) e1 Q∀u0(u ∈0 y ≡ (u ∈0 x) ∧ ϕ(u)), i.e. for each natural q we have:
2.1.0) {e1}(q) is defined, and {e1}(q) = j(e11; e12);
2.1.1) e11 Q[q ∈0 y → (q ∈0 x) ∧ ϕ(q)], i.e. for each natural r we have:

if 〈r; q〉 ∈
◦
y and q ∈ y then !{e11}(q) and {e11}(q) Q[(q ∈ x) ∧ ϕ(q)]. (1)

Let us try to satisfy the following stronger condition:

if 〈r; q〉 ∈
◦
y then !{e11}(q) and {e11}(q) Q[(q ∈0 x) ∧ ϕ(q) ]. (2)

2.1.2) e12 Q[(q ∈ x) ∧ ϕ(q) → q ∈0 y] , i.e. for arbitrary natural number r:

if sQ[(q ∈0 x) ∧ ϕ(q)] and (q ∈0 x) ∧ ϕ(q) then (3)

{e12}(s) is defined and {e12}(s) Q(q ∈0 y).

Let us try to satisfy the following stronger condition:

if sQ[(q ∈0 x) ∧ ϕ(q)] then !{e12}(s) and {e12}(s) Q(q ∈0 y). (4)

2.2) e2 Q∀z1(z ∈1 y ≡ (z ∈ x) ∧ ψ(z)), i.e. for each set z, and for each
number hz such that z.ext.hz we have: {e2}(hz) is defined and

2.2.0) {e2}(hz) = j(e21; e22);
2.2.1) e21 Q[z ∈1 y → (z ∈1 x) ∧ ψ(z)], i.e. for each natural number r:

if 〈r; ◦z〉 ∈
◦
y, and z ∈ y then !{e21}(r)and{e21}(r) Q(z ∈ x) ∧ ψ(z).

Let us try to satisfy the following stronger condition:

if 〈r; ◦z〉 ∈
◦
y, then !{e21}(r) and {e21}(r) Q(z ∈ x) ∧ ψ(z). (5)

2.2.2) e22 Q[(z ∈1 x) ∧ ψ(z) → z ∈1 y] , i.e. for each natural number s:

if sQ[(z ∈1 x) ∧ ψ(z)] and (z ∈1 x) ∧ ψ(z) then !{e22}(s) and 〈s; ◦z〉 ∈
◦
y,

Let us try to satisfy the following stronger condition:
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if sQ(z ∈1 x) ∧ ψ(z) then !{e22}(s) and 〈{e22}(s);
◦
z〉 ∈

◦
y .

Let us define: {eij}(q) := q for i, j = 1, 2, 3, and y = y1 ∪ y2, where

y1 � {〈r; ◦z〉|rQ(z ∈1 x) ∧ ψ(z)},

and
y2 � {〈r; q〉|rQ(q ∈0 x) ∧ ϕ(q)}.

Now we have to check only that y1 ∈ ∆ and y2 ∈ ∆, therefore, y ∈ ∆,
and so,

◦
y = y. To do that, we need in the following

Lemma For each formula ϕ of our language there is a number % such
that for all sets z , y , and all

−→
h it satisfies:

if
◦
z
−→
h∼
γ

◦
y and eQϕ(z) then %(e;h) is defined, and %(e;

−→
h ) Qϕ(y).

The number % recursively depends of parameters −→n , h−→w and ha from ϕ.
Proof. A simple induction on the length of the formula ϕ. �

So, the conditions (2), (4), (5) and (2.4) are satisfied. �

3. THE ADMISSIBILITY OF CHURCH RULE AND OTHER EFFECTIVITY PROPERTIES.

Theorem 2. The following effectivity properties hold for ZFI2c:
1. DP: let ϕ ∨ ψ be a formula of the language of the theory ZFI2c without any parameters. If

ZFI2c ` ϕ ∨ ψ then ZFI2c ` ϕ or ZFI2c ` ψ.
2. EP: let ∃x0ϕ(x) be a formula of the language of the theory ZFI2c without any parameters. If

ZFI2c ` ∃x0ϕ(x) then there is some number n such that ZFI2c ` ϕ(n).
3. CR: let ϕ be a formula of the language of the theory ZFI2c without as parameters only x and

y of sort 0. If ZFI2c ` ∀x0∃y0ϕ(x; y) then there is some effectively found number e such that
ZFI2c ` ∀x0ϕ(x; {e}(x)).

4. MR: let ϕ(x) be a formula of the language of the theory ZFI2c with only one number parameter
x. If ZFI2c ` ∀x(ϕ(x) ∨ ¬ϕ(x)) and ZFI2c ` ¬¬∃xϕ(x) then ZFI2c ` ∃xϕ(x)

Proof. 1. Let ZFI2c ` ϕ ∨ ψ, where formula ϕ ∨ ψ does not contains any parameters. Then by
theorem 1 there is a natural r such that ZFI2c ` rQ(ϕ ∨ ψ). It means by definition that

ZFI2c ` [j1e = 0 → ϕ ∧ j2eQϕ] ∧ [¬j1e = 0 → ϕ ∧ j2eQψ].

If j1e = 0 then ZFI2c ` [ϕ∧j2eQϕ], and, in particulary, ZFI2c ` ϕ. Analogously, if ¬j1e = 0 then
ZFI2c ` ψ.

2. Let ZFI2c ` ∃x0ϕ(x), where formula ∃x0ϕ(x) does not contains any parameters. Then by
theorem 1 there is a natural r such that

ZFI2c ` rQ∃x0ϕ(x).

It means by definition that
ZFI2c ` j2rQϕ(j1(r)) ∧ ϕ(j1(r)).

So, we have:
ZFI2c ` ϕ(j1(r)).
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3. Let ZFI2c ` ∀x0∃y0ϕ(x; y), where formula ∀x0∃ y0ϕ(x; y) does not contains any parameters.
Then by theorem 1 there is a natural r such that

ZFI2c ` rQ∀x0∃y0ϕ(x; y).

It means by definition that

ZFI2c ` ∀d 0[!{r}(d) ∧ j2({r}(d))Qϕ(d; j1({r}(d))) ∧ ϕ(d; j1({r}(d)))].

In particular, we have:

ZFI2c ` (∀d ∈ ω)[!{r}(d) ∧ ϕ(d; j1({r}(d)))].

Let {e}(d) � j1({r}(d)). Then ZFI2c ` ∀x0ϕ(x; {e}(x)).
4. Let ZFI2c ` ∀x0(ϕ ∨ ¬ϕ) and ZFI2c ` ¬¬∃x0ϕ, where the formula ϕ haves, for example,

two parameters x and y of sort 0. Then we have: ZFI2c ` ∀y∀x0(ϕ(x; y) ∨ ¬ϕ(x; y)) and
ZFI2c ` ∀y0¬¬∃x0ϕ. By CR there is a number m such that in ZFI2c we have:

` ∀y∀x0(!{m}(x; y) ∧ [({m}(x; y) = 0 → ϕ(x; y)) ∧ (¬({m}(x; y) = 0) → ϕ(x; y)).

So,
ZFI2c ` ∀y0∀x0(!{m}(x; y) ∧ [({m}(x; y) = 0 ≡ ϕ(x; y)).

But, by our hypothesis, also ZFI2c ` ∀y0¬¬∃x0ϕ(x; y), therefore, we have:

ZFI2c ` ∀y0¬¬∃x0 [{m}(x; y) = 0].

By weak Markov rule (WMR) without parameters for ZFI2c we get:

ZFI2c ` ∀y0∃x0{m}(x; y) = 0,

and therefore, we get:
ZFI2c ` ∀y0∃x0ϕ(x; y).�

Corollary 1. . The effectivity properties with parameters for ZFI2.
1. DP: let ϕ∨ψ be a formula of the language of the theory ZFI2 may be with set parameters. If

ZFI2c ` ϕ ∨ ψ then ZFI2c ` ϕ or ZFI2c ` ψ.
2. EP: let ∃x0ϕ(x) be a formula of the language of the theory ZFI2 may be with set parameters.

If ZFI2 ` ∃x0ϕ(x) then there is some number n such that ZFI2 ` ϕ(n).
3. CR: let ϕ be a formula of the language of the theory ZFI2 without as number parameters

only x and y. If ZFI2 ` ∀x0∃y0ϕ(x; y) then there is some effectively found number e such that
ZFI2 ` ∀x0ϕ(x; {e}(x)).

4. MR: let ϕ(x) be a formula of the language of the theory ZFI2 with only one number parameter
x, and may be some parameters of sort 1. Then we have: if ZFI2 ` ∀x(ϕ(x) ∨ ¬ϕ(x)) and
ZFI2 ` ¬¬∃xϕ(x) then ZFI2 ` ∃xϕ(x).

Proof. As in subsection 2.1 we consider the formula ϕ′ that is created from ϕ by replacement of all
parameters in ϕ by different free constants. �

So, we have proved the following
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3.1. Main theorem

Theorem 3. 1. DP: let ϕ ∨ ψ be a formula of the language of the theory ZFI2 may be with set
parameters. If ZFI2 ` ϕ∨ψ then for each derivation of this formula there is some effectively found
derivation of ϕ or some effectively found derivation of ψ.

2. EP: let ∃x0ϕ(x) be a formula of the language of the theory ZFI2 may be with set parameters. If
ZFI2 ` ∃x0ϕ(x) then for each derivation there are some effectively found number n and derivation
ZFI2 of ϕ(n).

3. CR: let ϕ be a formula of the language of the theory ZFI2 without as number parameters only
variables x and y . If ZFI2 ` ∀x0∃y0ϕ(x; y) then for each derivation of this formula there are
some effectively found number e and derivation in ZFI2 of the formula ∀x0ϕ(x; {e}(x)).

4. MR: let ϕ(x) be a formula of the language of the theory ZFI2 with only one number parameter
x, and may be some parameters of sort 1. Then we have: if ZFI2 ` ∀x(ϕ(x) ∨ ¬ϕ(x)) and
ZFI2 ` ¬¬∃xϕ(x) then ZFI2 ` ∃xϕ(x), where derivation of consequence of MR can be found
effectively by derivations of it’s antecedent.

Let us recall dc is double complement principle and M− is weak Markov principle [4]. Let us
note that this theorem is generalized on a number of other theories in the language of ZFI2. For
example, it is true for ZFI2 + dc as well ZFI2 + M−. This will be shown in [7].

The article was recommended by V. Lyubetsky, a member of the editorial board.
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