
Èíôîðìàöèîííûå ïðîöåññû, Òîì 7, � 1, 2007, ñòð. 13�32.

c© 2007 Srihari Sridharan.

INFORMATIONAL SECURITY

A Computationally Secure Randomized Method

for Cryptography and Spatial-Domain Steganography

Srihari Sridharan

B.Tech Information Technology,
BSA Crescent Engineering College (Affiliated to Anna University),

Vandalur, Chennai – 600 048, India
srhariin03@yahoo.com

Received December 12, 2006

Abstract—Cryptography deals with the design of algorithms for encryption and decryption.
In this paper a computationally secure cryptographic algorithm which uses 64-bit keys for
encryption and decryption of data is proposed. Steganography is the art of passing information
in a manner that the very existence of the message is unknown. The goal of steganography is
to avoid drawing suspicion to the transmission of a hidden message. If suspicion is raised, then
this goal is defeated. In this paper, the drawbacks in current spatial domain steganography
software are listed and rectified. In this paper, a new data hiding method for storing secret
data inside images and audio files in spatial domain is proposed. The proposed method stores
data inside image and audio files using a pseudorandom generator, which makes detection of
hidden information difficult, even if presence of hidden information is known. The proposed
method doesn’t require the aid of a cryptographic algorithm to make the data secure, although
a cryptographic algorithm can be used for additional security. In the proposed method, the
data to be embedded may be plain text or cipher text obtained by applying the plain text
to a cryptographic algorithm. A password obtained from the user is used to initialize the
pseudorandom generator. The location of the bytes where data is embedded is determined by
the next value generated by the pseudorandom generator. The data is embedded in the least
significant bit. The pseudorandom generator produces the same sequence of values when it is
initialized with a particular seed. This fact is used for the decoding process, where the seed is
generated from the password. A new procedure has been developed for data encoding without
manipulating the cover media, based on its contents. In this method a log file is generated for
the files that are to be secretly transmitted through the network. The log file is encrypted and
sent along with the cover media to the other end. The cover media can be a file of any format.

1. INTRODUCTION

Cryptography is the branch of cryptology dealing with the design of algorithms for encryption
and decryption, intended to ensure the secrecy and/or authenticity of messages. Steganography is
the art of data hiding that conceals the existence of the secret messages in the media.

Cryptography deals with the design of algorithms for encryption and decryption. Cryptography
provides a way to distribute files in secret code, or cipher, so intended recipients can only read
them. An encryption scheme is unconditionally secure if the cipher text generated by the scheme
does not contain enough information to determine uniquely the corresponding plain text, no matter
how much cipher text is available. There is no encryption algorithm that is unconditionally secure.
A cryptographic algorithm is computationally secure if the following two criteria are met.

(i) The cost of breaking the cipher exceeds the value of the encrypted information.
(ii) The time required to break the cipher exceeds the useful lifetime of the information.



14 SRIHARI SRIDHARAN

Steganography encompasses methods of transmitting secret messages through innocuous cover
carriers in such a manner that the very existence of the embedded messages is undetectable. Creative
methods have been devised in the hiding process to reduce the visible detection of the embedded
messages. An overview of current steganography software and methods applied to digital images is
examined in [JJ98F].

Hiding information, where electronic media are used as such carriers, requires alterations of
the media properties which may introduce some form of degradation. If applied to images that
degradation, at times, may be visible to the human eye and point to signatures of the steganographic
methods and tools used. These signatures may actually broadcast the existence of the embedded
message, thus defeating the purpose of steganography, which is hiding the existence of a message.
Images, audio and video files can be used as carriers.

2. TERMINOLOGY

Cryptography deals with encryption and decryption of data. A Crypto Algorithm is a procedure
that takes the plain text data and transforms it into cipher text in a reversible way. Plain text refers
to any message that is not encrypted. It is the input to an encryption function or the output of a
decryption function. Cipher text refers to the data that has been encrypted. It is the output of an
encryption function and the input to a decryption function. Encryption is the conversion of plain
text or data into unintelligible form by means of a reversible translation, based on a translation table
or algorithm. Decryption is the translation of encrypted text or data called cipher text into original
text or data called plain text. Password or Cryptokey is a character string used to authenticate an
identity. Knowledge of the password and its associated user ID is considered proof of authorization
to use the capabilities associated with that user ID. Pseudorandom Number Generator is a function
that deterministically produces a sequence of numbers that is apparently statistically random. A
possible formula or process may be represented as: -

Plain Text + Cryptokey = Cipher Text

Steganography literally means ”covered writing”and is the art of hiding the very existence of
a message. The possible Cover Carriers are innocent looking carriers (images, audio, video, text,
or some other digitally representative code) which will hold the hidden information. A Message
is the information hidden and may be plain text, cipher text, images, or anything that can be
embedded into a bit stream. Together the cover carrier and the embedded message create a Stego-
Carrier. Hiding information may require a Stegokey which is additional secret information, such
as a password, required for embedding the information. A possible formula of the process may be
represented as: -

Cover-Medium + Embedded Message + Stegokey = Stego-Medium

3. STEGANOGRAPHIC METHODS

The Internet is widely used as a channel for communication and information transfer, for both
individual and mass communication. Images can be used as excellent carriers for hiding information
and many such techniques have been discussed in [JJ98F] and a subset of steganography and
digital watermarking tools available at present have been analyzed in [JJ98A]. There are two broad
categories of these tools: Image Domain Tools and Transform Domain Tools.

Image Domain Tools use bit-wise methods that apply least significant bit (LSB) insertion and
noise manipulation as the techniques for hiding data in images. There are some tools of this kind
viz. StegoDos, S-Tools, Mandelsteg, EzStego, Hide and Seek, Hide4PGP, Jpeg-Jsteg, White Noise

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 15

Storm, and Steganos. The image formats typically used in such steganography methods are lossless
and the data can be directly manipulated and recovered.

The Transform Domain Tools include those that involve manipulation of algorithms and image
transforms such as discrete cosine transformation (DCT) and wavelet transformation. These tools
hide the data in more significant areas of the image and may manipulate image properties such as
luminance. The tools that belong to this group include PictureMarc, JK-PGS, SysCop, and SureSign
[JJ98A]. These techniques are more robust than bit-wise techniques; however a tradeoff exists
between the robustness obtained and the amount of information added to the image [JJ98F]. Many
of these transform domain methods may survive conversion between lossless and lossy formats, as
these methods are independent to image format.

The techniques like patchwork, pattern block encoding, spread spectrum methods [JJ98A] and
masking [JJ98F] – which add redundancy to the hidden information - share characteristics of both
image and transform domain tools. These techniques may help protect the information stored in
the image when some image processing such as cropping and rotating is performed on the image.
The patchwork approach uses a pseudo-random technique to select multiple areas (or patches) of
an image for marking. Each patch may contain the watermark, so if one is destroyed or cropped,
the others may survive. Masks may fall under the image domain as being an added component or
image object.

4. DRAWBACKS IN THE CURRENTLY USED SOFTWARE

The following are the drawbacks present in the currently used steganography software:-

1. Reduction in number of colors in the cover image to keep the total number of unique colors less
than 256.

2. Restrictions on the image size in terms of the number of pixels e.g. image size must be 320x200
pixels. If the size is less than the prescribed values then black color is padded to the image. If
the size is greater than the prescribed value then the image is cropped to fit in.

3. Restrictions on the type of image, e.g., 256 bitmaps can only be used.
4. Restrictions on the dimensions of the picture in terms of pixels.
5. Data is embedded serially in LSB of each byte starting from byte next to the header. Therefore

the message can be easily decoded from the image when the LSB from each byte is decoded,
starting from the byte next to the header. This needs the aid of a cryptographic algorithm to
make the data secure.

6. Low Bit Encoding is performed serially in the LSB of the audio stream. This also needs the aid
of a cryptographic algorithm to make the data secure.

7. Most of the tools allow embedding of only single files.

The above mentioned details have been clearly explained in [JJ98A].

5. PROPOSED ALGORITHMS FOR CRYPTOGRAPHY AND STEGANOGRAPHY

5.1. Cryptographic Algorithm

5.1.1. Encryption Procedure

The inputs for the encryption procedure are plain text, cryptokey and the number of encryption
cycles for the cryptokey encryption. The output is the cipher text.

The plain text ‘P’ is converted into the cipher text ‘C’ using the key ‘K’ and the number of
encryption cycles for the cryptokey encryption ‘N’.

The steps involved in the encryption procedure are as follows:

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



16 SRIHARI SRIDHARAN

Fig. 1. Data Encryption Process

1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The block size for file encryption is equal to key size i.e. 64 bits.
6. The plain text is converted into cipher text of same size in a two stage process. The plain text

is first converted into intermediate cipher text and then the intermediate cipher text is converted
into cipher text.

7. In the first stage there are various methods for generating the intermediate cipher text out of
which one method is selected at random. The 64 bit offset is used for:

(i) Initializing the pseudorandom generator before one of the method is selected at random.
(ii) Initializing the pseudorandom generator for the conversion of intermediate cipher text to cipher

text.
(iii) Converting the plain text to intermediate cipher text by performing Xor operation.
(iv) Initializing the pseudorandom generator for any shuffling operation to be performed after split-

ting the key during intermediate cipher text generation process.

8. The 64 bit offset is divided into 8 bytes (8 parts). The 64 bit offset is Xor-ed with data in various
ways to generate the intermediate cipher text. They are as follows:

(i) Each byte is Xor-ed with a byte of plain text to get a 64 bit result. The 64 bit offset is cyclically
right shifted by 8 bits and again Xor-ed with the 64 bit result obtained from the previous
operation. The same operation is repeated for 8 iterations.

(ii) Each byte is Xor-ed with a byte of plain text to get a 64 bit result. The 64 bit offset is right
shifted (non cyclic) by 8 bits and again Xor-ed with the 64 bit result obtained from the previous
operation. The same operation is repeated for 8 iterations.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 17

(iii) Each byte is Xor-ed with a byte of plain text to get a 64 bit result. The 64 bit offset is cyclically
left shifted by 8 bits and again Xor-ed with the 64 bit result obtained from the previous operation.
The same operation is repeated for 8 iterations.

(iv) Each byte is Xor-ed with a byte of plain text to get a 64 bit result. The 64 bit offset is left
shifted (non cyclic) by 8 bits and again Xor-ed with the 64 bit result obtained from the previous
operation. The same operation is repeated for 8 iterations.

(v) Shuffle 8 parts of the offset and Xor with the plain text to get a 64 bit result. Shuffle 8 parts
of the offset each and every time by reinitializing the pseudorandom generator with the shuffled
offset used in the previous iteration. The same operation is repeated for 8 iterations.

(vi) Shuffle 8 parts of the offset and Xor with the plain text to get a 64 bit result. Shuffle 8 parts of
the offset each and every time (without reinitializing the pseudorandom generator). The same
operation is repeated for 8 iterations.

(vii) Shuffle 8 parts of the offset and Xor with the plain text to get a 64 bit result. The 64 bit offset
is cyclically right shifted by 8 bits and again Xor-ed with the 64 bit result obtained from the
previous operation. The same operation is repeated for 8 iterations.

(viii) Shuffle 8 parts of the offset and Xor with the plain text to get a 64 bit result. The 64 bit offset
is right shifted (non cyclic) by 8 bits and again Xor-ed with the 64 bit result obtained from the
previous operation. The same operation is repeated for 8 iterations.

(ix) Shuffle 8 parts of the offset and Xor with the plain text to get a 64 bit result. The 64 bit offset
is cyclically left shifted by 8 bits and again Xor-ed with the 64 bit result obtained from the
previous operation. The same operation is repeated for 8 iterations.

(x) Shuffle 8 parts of the offset and Xor with the plain text to get a 64 bit result. The 64 bit offset
is left shifted (non cyclic) by 8 bits and again Xor-ed with the 64 bit result obtained from the
previous operation. The same operation is repeated for 8 iterations.

(xi) Each byte of plain text is Xor-ed with randomly selected value between 0 and 255 to get a
64 bit result. The 64 bit offset is cyclically right shifted by 8 bits and used to reinitialize the
pseudorandom generator for next iteration. The same operation is repeated for 8 iterations.

(xii) Each byte of plain text is Xor-ed with randomly selected value between 0 and 255 to get a 64
bit result. The 64 bit offset is right shifted (non cyclic) by 8 bits and used to reinitialize the
pseudorandom generator for next iteration. The same operation is repeated for 8 iterations.

(xiii) Each byte of plain text is Xor-ed with randomly selected value between 0 and 255 to get a
64 bit result. The 64 bit offset is cyclically left shifted by 8 bits and used to reinitialize the
pseudorandom generator for next iteration. The same operation is repeated for 8 iterations.

(iv) Each byte of plain text is Xor-ed with randomly selected value between 0 and 255 to get a 64
bit result. The 64 bit offset is left shifted (non cyclic) by 8 bits and used to reinitialize the
pseudorandom generator for next iteration. The same operation is repeated for 8 iterations.

(xv) Each byte of plain text is Xor-ed with randomly selected value between 0 and 255 to get a 64
bit result. Each byte of the 64 bit result is Xor-ed with randomly selected value between 0 and
255 (without reinitializing the pseudorandom generator). The same operation is repeated for 8
iterations.

There are many other ways to generate the intermediate cipher text. Based on the requirement of
security other ways can be added to increase the security, as the increase in number of ways used
to generate the intermediate cipher text increases the complexity involved in breaking the cipher
increases.

9. Each byte in the intermediate cipher text is Xor-ed with a randomly selected number between
0 and 255. This byte is converted into ASCII value. In this way 64 bit cipher text for the given 64
bit plain text is obtained.

10. This block of cipher text is written into a file and the next block of plain text is obtained for
encryption. The encrypted key is again encrypted and the 64 bit offset value is again computed.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



18 SRIHARI SRIDHARAN

This is used to initialize the pseudorandom generator and used as the key for next block of plain
text.

Thus the entire file is encrypted. If the file size is not an exact multiple of the block size then
the last block is less than 64 bits in size. The required number of bits in the key is used for the
last block. In the encryption process the offset computation process is such that the number of bits
in the key i.e. the key length can be increased to any value, by changing a small factor. Thus the
algorithm can work with keys of any length and as the key length increases security also increases.
The key length decides the block size for encryption and also the number of iterations in the Xor-ing
process during the intermediate cipher text generation process. Any other hashing routine can be
used in place of the offset computation process to generate a 64 bit offset when a string key is given
as input.

5.1.2. Decryption Procedure

The inputs for the decryption procedure are cipher text, cryptokey and the number of encryption
cycles for the cryptokey encryption. The output is the plain text.

The cipher text ‘C’ is converted into the plain text ‘P’ using the key ‘K’ and the number of
encryption cycles for the cryptokey encryption ‘N’.

Fig. 2. Data Decryption Process

The steps involved in the decryption procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The pseudorandom generator generates the same sequence of random numbers when it is
initialized with the same seed value. The block size for file decryption is same as the key size, i.e.,
64 bits.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 19

6. The cipher text is converted into plain text in a two step process. The first step involves the
conversion of the cipher text to intermediate cipher text and then the intermediate cipher text is
converted into plain text.

7. The first block of cipher text is read from the file. The 64 bit offset obtained from the encrypted
cryptokey is used to initialize the pseudorandom generator. Each byte in the cipher text is Xor-ed
with a randomly selected number between 0 and 255. This gives the intermediate cipher text.

8. The next step is the conversion of intermediate cipher text to plain text. The conversion
requires the computation of all the 64 bit offsets used for 8 iterations in advance, because the Xor
operation between the intermediate cipher text and the 64 bit offset must performed in the reverse
order. Consider the following equation, A Xor B gives C and C Xor D gives E, i.e.,

C = A Xor B, E = C Xor D

To get back A from E the following operations must be performed, E Xor D gives C and C Xor
B gives A, i.e.,

C = E Xor D, A = C Xor B

Thus when the same seed value is used for initializing the pseudorandom generator it generates
the same sequence of random numbers used during the encryption process. The same method of
intermediate cipher text generation process gets selected and the corresponding reverse operation
is performed to get the plain text from the intermediate cipher text. In this way the 64 bit plain
text block is obtained from the 64 bit cipher text block.

9. Then this plain text block is written into a file and the next bock of cipher text is obtained for
decryption. The encrypted key used for previous block is again encrypted and the 64 bit offset value
is again computed. This is used for decrypting the next block of cipher text. As during encryption
if the last block size is less than 64 bits then required number of bits in the key are used. Thus the
entire file is decrypted.

5.2. Steganographic Algorithms

There are two main methods in the steganographic algorithms proposed. They are Data embed-
ding and extraction method and the Log file generation and tracing method. They are explained
in detail.

5.2.1. Data embedding and extraction method

The data embedding and extraction method describes how multiple files of any format are
hidden inside an image or an audio stream. The inputs for embedding data are cover media, the
files that are to be embedded inside the cover media, stegokey and the number of encryption cycles
for stegokey encryption. The output is stego media. The block diagram of the data embedding
procedure is depicted below.

The inputs for the data extraction procedure are stego media, stegokey and the number of
encryption cycles for stegokey encryption. The output is set of files present inside the stego media.
The block diagram of the data embedding procedure is depicted below.

5.2.1.1. Data embedding and extraction method with images as cover media

(a) Data embedding procedure

The cover media can be a JPEG, GIF or bitmap file, it is converted into a 24-bit true color
bitmap image. The stego media obtained is bitmap.

The set of files ‘F’ are embedded inside cover media ‘C’ using the key ‘K’ and the number of
encryption cycles for the stegokey encryption ‘N’ there by producing the stego media ‘S’ as output.

The steps involved in the data embedding procedure are as follows:

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



20 SRIHARI SRIDHARAN

Fig. 3. Data Embedding Procedure

Fig. 4. Data Extraction Procedure

1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The block size is 64 bits. The first block of data to be embedded is taken and embedded inside
the cover media as follows:

(i) Every block of data is embedded byte by byte.
(ii) The data is stored by using either the least significant bit (LSB) or by using the two LSBs of

the color component.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 21

(iii) A byte of data is split into 8 parts of 1 bit each or 4 parts of two bits each based on the number
of LSB used. Each part is stored in the LSB of the color component.

(iv) A pixel is selected at random by randomly selecting a row ‘r’ and column ‘c’ and the color
components present in the pixel in terms of red, green and blue are obtained.

(v) Then a color component is selected at random and the data is embedded in the LSB. The color
value is computed from the new color component values and restored.

(vi) When a row, column and color component are selected at random the algorithm must ensure
that the selected values are new since reusing the already used row, column and color component
damages the already stored data.

(vii) This is handled by maintaining a set ‘s’ that contains the already selected values. When new
values of row, column and color component are selected at random they are compared with the
values in the set. If the values are new then the data is stored in the LSB, else the algorithm
finds an unused position.

(viii) Similarly all the bytes are embedded inside the image.

6. The next block of data to be embedded is obtained. The encrypted key used for the previous
block is again encrypted and the 64 bit offset value is again computed. This is used to initialize the
pseudorandom generator before embedding the next block of data. If the data is not exact multiple
of 64 bits then the last block has less than 64 bits. Thus the entire data is split into blocks and
embedded into the image.

Multiple files of any format are embedded inside the image using the protocol format described
below:

Fig. 5. Protocol Format for Data Embedding and Extraction in Images

The PAH – Password Authentication Header ensures that the same password is used during
embedding and extracting data. If wrong password is used then data cannot be extracted.

The Mode contains the information regarding the number of LSB used for storing data. 8 bits
are used to represent the Mode, in future if new modes are added they can be easily represented.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



22 SRIHARI SRIDHARAN

The NOF – Number of Files contains the information regarding the number of files stored inside
the image. 8 bits are used for representing the number of files therefore 255 files can be stored.

After embedding these details each and every file’s data is embedded along with particular
header information to identify the size and format of the file.

The LFS n – Length of File Size of file n represents the number of digits present in the file size.
If the file size is 12000 B the length is 5. 8 bits are used for representing the length of file size.

The FS n – File Size n represents the file size of nth file. The file size is converted into a string
and stored. If the file size is 12000 B it cannot be represented in a single byte, and the data is
embedded byte by byte. In this representation the LFS n denotes the length of FS n, since the
value of LFS n can be up to 255 the file size can be up to 255 digits in length, which is more than
enough.

The LFN n – Length of Filename of file n represents the number of characters present in the
filename. If the filename is ‘abc.txt’ then the length is 7. 8 bits are used for representing the length
of filename.

The FN n – Filename n represents the filename along with the extension. Files of various formats
have different headers. To reduce the complication in processing the header format of each and every
file the extension information is stored along with the filename.

The File n Data – Data present in file n represents the file data.
For each and every file the LFS n, FS n, LFN n, FN n, File n Data values are computed and

embedded inside the image.
The AC n – Authentication Checksum for file n is the checksum computed using a hashing

procedure. The AC n is computed over LFS n, FS n, LFN n, FN n, File n Data. This ensures the
data integrity of the file.

The OAC – Overall Authentication Checksum is the checksum computed over all the fields except
the PAH – Password Authentication Header. This ensures overall data integrity. Thus all the files
are embedded inside the cover image.

(b) Data extraction procedure

The set of files ‘F’ are extracted from the stego media ‘S’ using the key ‘K’ and the number of
encryption cycles for the stegokey encryption ‘N’.

The steps involved in the data extraction procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The pseudorandom generator generates the same sequence of numbers when it is initialized
with the same seed value.

6. The same row, column and the color component which were selected during the data embed-
ding process will be selected now and based on value of Mode the data can be extracted from the
LSB. Thus the first block of data is extracted. As in the embedding process a set ‘s’ is maintained
which contains the location from which data was extracted.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 23

7. The encrypted key used for the previous block is again encrypted and the 64 bit offset value is
again computed. This is used to initialize the pseudorandom generator before extracting the next
block of data.

8. The entire data is extracted in a similar manner. Based on the protocol format explained
earlier the files are saved separately and their integrity is checked by comparing the computed
checksum and original checksum. The OAC is used for overall data integrity check.

5.2.1.2. Data embedding and extraction method with audio stream as cover media

(a) Data embedding procedure

The cover media and stego media are of wave file format. The wave audio files are of RIFF –
Resource Interchange File Format. The file has a header region, other than the header region the
data part is the digital form of the analog signal stored as digital samples. The wave file not only
contains the digital data required to produce the sound but also additional information such as
sampling rate, the type of audio data, and other critical data. Wave data comes in several formats,
sampling rates, channels and resolutions (bits / sample).

The set of files ‘F’ are embedded inside cover media ‘C’ using the key ‘K’ and the number of
encryption cycles for the stegokey encryption ‘N’ there by producing the stego media ‘S’ as output.

The steps involved in the data embedding procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The block size is 64 bits. The first block of data to be embedded is taken and embedded inside
the cover media as follows:

(i) Every block of data is embedded byte by byte.
(ii) Data is stored in the LSB of the randomly selected byte from the audio stream.
(iii) A byte is split into 8 parts of 1 bit each. Each and every part is stored in LSB of the audio

stream byte. When the LSB of a single byte is changed the quality is not affected much.
(iv) Then a byte is selected at random and checked whether it is present in the audio file’s header

range. The selected byte must not be in the header range of the audio file, else a new position
is selected.

(v) When a byte is selected at random the algorithm must ensure that the selected value is new
since reusing the already used byte damages the already stored data.

(vi) This is handled by maintaining a set ‘s’ that contains the already selected values. When new
byte is selected at random it is compared with the values in the set. If the values are new then
the data is stored in the LSB, else the algorithm finds an unused position.

(vii) Similarly all the bytes are embedded inside the audio file.

6. The next block of data to be embedded is obtained. The encrypted key used for the previous
block is again encrypted and the 64 bit offset value is again computed. This is used to initialize the
pseudorandom generator before embedding the next block of data. If the data is not exact multiple
of 64 bits then the last block has less than 64 bits. Thus the entire data is split into blocks and
embedded into the audio file.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



24 SRIHARI SRIDHARAN

Multiple files of any format are embedded inside the audio using the protocol format described
below:

Fig. 6. Protocol Format for Data Embedding and Extraction in Audio Stream

The fields have the same meaning as in the protocol format used for images. The only difference
here is that the Mode field is not used since only the LSB is used for storing the data. Thus all the
files are embedded inside the cover audio file.

(b) Data extraction procedure

The set of files ‘F’ are extracted from the stego media ‘S’ using the key ‘K’ and the number of
encryption cycles for the stegokey encryption ‘N’.

The steps involved in the data extraction procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The pseudorandom generator generates the same sequence of numbers when it is initialized
with the same seed value.

6. The same bytes get selected and the data can be extracted from the LSB. Thus the first block
of data is extracted from the LSB. Thus the first block of data is extracted. As in the embedding
process a set ‘s’ is maintained which contains the location from which data was extracted.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 25

7. The encrypted key used for the previous block is again encrypted and the 64 bit offset value is
again computed. This is used to initialize the pseudorandom generator before extracting the next
block of data.

8. The entire data is extracted in a similar manner. Based on the protocol format explained
earlier the files are saved separately and their integrity is checked by comparing the computed
checksum and original checksum. The OAC is used for overall data integrity check.

The functional block diagram below shows the overall operation:

Fig. 7. Functional Block Diagram – Data Embedding and Extraction Method

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



26 SRIHARI SRIDHARAN

The sender encrypts the secret information to be transmitted using secret key K1 (cryptokey)
and number of password encryption cycles N1. The encrypted data is embedded inside the cover
media using secret key K2 (stegokey) and number of password encryption cycles N2. The stego
media is transmitted through the communication network and at the receiver end the data is
extracted using the secret key K2 and the number of password encryption cycles N2. Then the
secret key K1 and the number of password encryption cycles N1 is used to decrypt the encrypted
data. The main advantage of embedding multiple files is that the information about the keys used
for cryptography can be put in a separate file and sent to the receiver along with the other files
where it can be extracted and the information can be used for decrypting the cipher text. Thus
multiple files of any format can be embedded inside an image or an audio file.

5.2.2. Log file generation and tracing method

The log file generation and tracing method describes how multiple files of any format are encoded
into log file based on an image or an audio stream or any other file as cover media. The inputs for
log generation process are cover media, the files that are to be encoded into a log file, stegokey and
the number of encryption cycles for stegokey encryption. The output is log file. The block diagram
of the log generation procedure is depicted below.

Fig. 8. Log Generation Procedure

The inputs for the log tracing procedure are log file, cover media, stegokey and the number of
encryption cycles for stegokey encryption. The output is set of files which were encoded into a log
file at the sender end. The block diagram of the log tracing procedure is depicted below.

5.2.2.1. Log file generation and tracing method with images as cover media

(a) Log generation procedure

The cover media can be a JPEG, GIF or bitmap file.
The set of files ‘F’ are encoded into a log file ‘L’ based on cover media ‘C’ using the key ‘K’ and

the number of encryption cycles for the stegokey encryption ‘N’.
The steps involved in the log generation procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 27

Fig. 9. Log Tracing Procedure

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The block size is 64 bits. The first block of data is taken and encoded based on the cover
media as follows:

(i) Every block of data is encoded byte by byte.
(ii) The log byte can be generated in two ways namely bitwise comparison process and byte wise Xor

process. One of these two methods can be used or any one method can be selected at random.
In the latter case the method used for log byte generation each and every block varies.

(iii) In byte wise Xor process, a pixel is selected at random by randomly selecting a row ‘r’ and
column ‘c’ and the color components present in the pixel in terms of red, green and blue are
obtained. A Xor operation is performed between the data byte and a randomly selected color
component of the pixel to get the log byte. This is written into the log file after 64 bits of log
file data is generated.

(iv) In bitwise comparison process a pixel is selected at random by randomly selecting a row ‘r’ and
column ‘c’ and the color components present in the pixel in terms of red, green and blue are
obtained. Then a color component is selected at random and the data bit is compared with a
randomly selected bit in the color component. If the data bit and the randomly selected bit are
same then the log bit is set else the log bit is reset. In a similar manner a block of log file content
is generated for a block of data.

(v) In this case the set of already selected values need not be maintained since the cover media is
not affected.

(vi) Thus a data block is encoded into a log file block.

6. The next block of data to be encoded is obtained. The encrypted key used for the previous
block is again encrypted and the 64 bit offset value is again computed. This is used to initialize the
pseudorandom generator before encoding the next block of data. If the data is not exact multiple
of 64 bits then the last block has less than 64 bits. Thus the entire data is split into blocks and the
log file is generated.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



28 SRIHARI SRIDHARAN

Multiple files of any format are encoded into a log file based on images as cover media using the
protocol format described below:

Fig. 10. Protocol Format for Log File Generation and Tracing using Images as Cover Media

The fields have the same meaning as in the protocol format used for embedding data inside
images. The only difference in this case is that the Mode indicates whether bitwise comparison or
byte wise Xor method is used for log byte generation.

(b) Log tracing procedure

The set of files ‘F’ are decoded from the log file ‘L’ by comparing the log file and the cover media
‘C’ using the key ‘K’ and the number of encryption cycles for the stegokey encryption ‘N’.

The steps involved in the log tracing procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The pseudorandom generator generates the same sequence of numbers when it is initialized
with the same seed value.

6. The same row, column and the color component which were selected during the log generation
process will be selected now and based on value of Mode the data can be decoded by comparing
the log bit and the randomly selected bit of the color component. If the log bit and the randomly

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 29

selected bit are same then the data bit is set else the data bit is reset. In a similar manner a block
of data is decoded from a block of log file.

7. The encrypted key used for the previous block is again encrypted and the 64 bit offset value
is again computed. This is used to initialize the pseudorandom generator before decoding the next
block of data.

8. The entire data is decoded in a similar manner. Based on the protocol format explained earlier
the files are saved separately and their integrity is checked by comparing the computed checksum
and original checksum. The OAC is used for overall data integrity check.

5.2.2.2. Log file generation and tracing method with audio files or file any other format as cover
media

(a) Log generation procedure

The cover media can be an audio file or a file of any other format.
The set of files ‘F’ are encoded into a log file ‘L’ based on cover media ‘C’ using the key ‘K’ and

the number of encryption cycles for the stegokey encryption ‘N’.
The steps involved in the log generation procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The block size is 64 bits. The first block of data is taken and encoded based on the cover
media as follows:

(i) Every block of data is encoded byte by byte.
(ii) The log byte can be generated in two ways namely bitwise comparison process and byte wise Xor

process. One of these two methods can be used or any one method can be selected at random.
In the latter case the method used for log byte generation each and every block varies.

(iii) In byte wise Xor process, a byte is selected at random and a Xor operation is performed between
the data byte and a randomly selected byte to get the log byte. This is written into the log file
after 64 bits of log file data is generated.

(iv) In bitwise comparison process a byte is selected at random. Then the data bit is compared with
a randomly selected bit in the selected byte. If the data bit and the randomly selected bit are
same then the log bit is set else the log bit is reset. In a similar manner a block of log file content
is generated for a block of data.

(v) In this case the set of already selected values need not be maintained since the cover media is
not affected.

(vi) Thus a data block is encoded into a log file block.

6. The next block of data to be encoded is obtained. The encrypted key used for the previous
block is again encrypted and the 64 bit offset value is again computed. This is used to initialize the
pseudorandom generator before encoding the next block of data. If the data is not exact multiple
of 64 bits then the last block has less than 64 bits. Thus the entire data is split into blocks and the
log file is generated.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



30 SRIHARI SRIDHARAN

Multiple files of any format are encoded into a log file based on any file as cover media using
the same protocol format described earlier. The fields have the same meaning as in the protocol
format used for encoding data based on images as cover media.

(b) Log tracing procedure

The set of files ‘F’ are decoded from the log file ‘L’ by comparing the log file and the cover media
‘C’ using the key ‘K’ and the number of encryption cycles for the stegokey encryption ‘N’.

The steps involved in the log tracing procedure are as follows:
1. The key ‘K’ is converted into a 64 bit offset value.
2. This 64 bit value is used as seed to initialize a pseudorandom generator and the key is

encrypted by performing a Xor operation between every byte in the key and a randomly selected
value between 0 and 255. The entire key is encrypted in a similar manner.

3. The encryption of the key takes place for ‘N’ cycles specified by the user. The encrypted key
generated in each cycle is converted into a 64 bit offset and used to initialize the pseudorandom
generator for the next cycle of key encryption.

4. After the specified number of encryption cycles the encrypted key generated in the final cycle
is converted into a 64 bit offset.

5. The pseudorandom generator generates the same sequence of numbers when it is initialized
with the same seed value.

6. The same byte which was selected during the log generation process will be selected now
and based on value of Mode the data can be decoded by comparing the log bit and the randomly
selected bit of the selected byte. If the log bit and the randomly selected bit are same then the data
bit is set else the data bit is reset. In a similar manner a block of data is decoded from a block of
log file.

7. The encrypted key used for the previous block is again encrypted and the 64 bit offset value
is again computed. This is used to initialize the pseudorandom generator before decoding the next
block of data.

8. The entire data is decoded in a similar manner. Based on the protocol format explained earlier
the files are saved separately and their integrity is checked by comparing the computed checksum
and original checksum. The OAC is used for overall data integrity check.

The functional block diagram below shows the overall operation.
The sender encrypts the secret information to be transmitted using secret key K1 (cryptokey)

and number of password encryption cycles N1. The encrypted data is encoded into log file based
on the cover media using secret key K2 (stegokey) and number of password encryption cycles N2.
The log file is encrypted and transmitted through the communication network and at the receiver
end the log file is decrypted and then the data is decoded using the secret key K2 and the number
of password encryption cycles N2. Then the secret key K1 and the number of password encryption
cycles N1 is used to decrypt the encrypted data. The main advantage of encoding multiple files into
a log file is that the information about the keys used for cryptography can be put in a separate file
and sent to the receiver along with the other files where it can be decoded and the information can
be used for decrypting the cipher text. Thus multiple files of any format can be converted into a
log file based on an image file or an audio file or a file of any format as cover media. In this case
any file can be used as the cover media, the hacker requires the cover media and the log file to hack
the secret information being transmitted and the files that are encoded into a log file can larger
than the cover media. In case of embedding data the files must be smaller than the cover media.
Thus files can be secretly transmitted using the log file generation and tracing method.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



A COMPUTATIONALLY SECURE RANDOMIZED METHOD 31

Fig. 11. Functional Block Diagram – Log File Generation and Tracing Method

6. CONCLUSION

The set of drawbacks available in the currently used procedures have been identified and solution
has been provided for the existing problems. The drawbacks have been rectified with the design of
new algorithms for Cryptography and Steganography. Furthermore an innovative method of data
encoding without modifying the cover media has been designed. One of the major achievements
is that the Cryptographic and the Steganographic algorithms have been designed such that they
handle multiple files of any format. Moreover authentication is also provided for data that is being

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007



32 SRIHARI SRIDHARAN

transmitted. The new method provides acceptable quality of the stego media with no or very little
distortion.

7. FUTURE COURSE OF ACTION

Currently the enhancement and of the Cryptographic and Steganographic algorithms and its
implementation are in progress. The following have been identified as the future scope:

1. Implementation of the cryptographic algorithm in hardware.
2. Development of public key algorithms for cryptography and steganography.
3. Frequency domain steganography.
4. Steganography using video as cover media.
5. Error correction using various error correction techniques or development of new techniques.
6. Data compression using existing techniques or development of new techniques.
7. Development of Key Distribution Center (KDC) for cryptographic algorithm.
8. Development of VPN.
9. Development of a Random Number Generator.

10. Development of new hashing techniques.

At present the algorithms have been implemented as a software package for Windows operating
system. The implementation of these algorithms for Linux operating system is in planning stage.

8. ACKNOWLEDGEMENT

I would like to thank Prof. S. P. Reddy, former Head of the Department of Information Tech-
nology, BSA Crescent Engineering College, for his invaluable guidance, constant support and en-
couragement. I would like to thank my friends Ramasubramanian P.G., Venkatakrishnan R., Rafiq
M., and Venkataramanan K. for their useful discussions.

References

[GW92] Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley. Reading, MA,
(1992)

[JJ98F] Johnson, N.F., Jajodia, S.: Exploring Steganography: Seeing the Unseen. IEEE Com-
puter. February (1998) 26-34

[JJ98A] Johnson, N.F., Jajodia, S.: Steganalysis of Images Created Using Current Steganography
Software. Proceedings of the Second Information Hiding Workshop held in Portland, Oregon, USA,
April (1998)

[Sta99]Stallings, W.: Cryptography & Network Security: Principles and Practice, Prentice Hall,
Upper Saddle River, New Jersey, (1999)

[Sch96] Schneier, B.: Applied Cryptography: Protocol, Algorithms, and Source Code in C, 2nd

Ed. New York, NY: John Wiley & Sons, (1996)

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 7 � 1 2007


