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Amnnorarusa—In this paper, we introduce a new model for road detection, based on the multiple
birth and death (MBD) optimization algorithm, recently proposed for counting populations of
trees or flamingos. We discuss the choice of the energy function guaranteeing accurate detections
of both junctions and parallel roads, and preserving the connectivity of the road network despite
the occlusions in high resolution images. We also propose here a novel local filter used as a
preprocessing step, for detecting roads, and involved in the definition of the energy function.

1. INTRODUCTION

We address the problem of road network extraction from satellite or aerial images in order to
produce or update maps. To tackle this difficult problem, a large class of methods consists of semi-
automatic approaches. In these methods, an operator gives a starting point (a seed) and a direction
to initialize a tracking algorithm [13,4], some endpoints to be linked by a dynamic programming
procedure |3, 8] or some control points to initialize a deformable contour model [9] or a dynamic
programming algorithm [6]. Fully automatic road network extraction from satellite images, although
much more difficult to be solved, is crucial when considering concrete applications. Indeed, the
gain in time of an operator is low if one needs to provide seeds or initial checking points. Fully
automatic techniques based on local operators lack robustness with respect to noise, especially for
high resolution images, showing some occluded road segments in case of tree shadow for example. To
reduce this sensitivity to noise, a possibility is to combine several local operators [14], for example to
estimate seeds for a semi-automatic algorithm [1|. However, adding prior information in the modeling
allows more flexibility and robustness. This information can be embedded in the model through
variational [10] or probabilistic frameworks [12]. In this case, the complexity of the models leads
to heavy computational issues. A good compromise between complexity, accuracy and generality is
still challenging. Recently, a new approach based on a marked point process modeling and called the
Quality Candy model has been proposed in [7]. Since roads are associated with linear objects, the
grains in the model are considered to be segments, and every segment is determined by a point (the
location of the center) and marks (the orientation and the length). The prior knowledge models
the high connectivity and the low curvature of a road network using some interactions between
neighboring segments. The optimization in this model is performed by an RIMCMC algorithm. The
results obtained are satisfactory in terms of network connectivity and are robust with respect to
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occlusions. However, junctions are not taken into account in the prior which leads to misdetections in
such areas. Moreover, the optimization using RIMCMC algorithms converges usually slowly. That
is why we propose a new model for the road network extraction based on marked point process
approach. In our model, we consider a point process (with points as the grains) to speed up the
convergence. Connectivity, curvature and junctions of the network are modeled in the prior whereas
the data term is computed from a local road detector. Point process models are usually optimized by
a RIMCMC sampler embedded in a simulated annealing scheme [5] or a combination of jump kernels
and diffusion [11]. In this paper, we consider a recently proposed multiple birth and death (MBD)
algorithm, based on the Gibbs field approach [2]. The main advantage of this algorithm with respect
to RIMCMC is that each step of the iterative probabilistic scheme concerns the whole configuration
and there is no rejection. During the birth step at each iteration, several objects (a random set) are
added to the configuration independently of both the energy function and the temperature. During
the death step at each iteration, a subconfiguration of the current configuration, and not only one
object, can be deleted. Such jumps are much more efficient for scanning the configuration space.

We first describe a local road detector in section 2. The point process, modeling the road network,
is detailed in section 3 and the new optimization algorithm in section 4. Results and comparison
with other models are shown in section 5 and conclusion are drawn in section 6.

2. A LOCAL ROAD DETECTOR

We propose in this section a local road detector (LRD). It is a two steps transformation of the
input image Z resulting in the filered image U = {u,} (so-called LRD image). The LRD image U
is obtained by computing a local contrast term from Z weighted by coefficients depending the local
orientation consistency of the gradient (see formula (4) below). The image U is considered as the
data for the proposed point process modeling road networks.

The input image 7 is a real-valued function (the grey level function) defined on a bounded subset
Q of 272

T: QcC7ZZ*—]0,255]. (1)

We denote by v = Z/255 the normalized grey level function, so that v, € [0,1], p € .

Locally a road has a contrast with both sides. We propose to estimate this property by considering
the following filter:

Vp €€, iy = max [min(vp — Vptg; Up — Up—g)]; (2)
q€01(p)

where O;(p) is a fixed neighborhood of pixel p (O1(p) = {q = (i, ¢;) € Q : max(|p; — ql, |pj; — qj]) <
[}). The size [ of this neighborhood corresponds to the maximum width of roads to be detected and
is therefore linked to the data resolution and the type of roads. In the experiments shown in this
paper, we have taken [ = 2, which means that we consider roads having a width lower or equal to 5
pixels. It is clear that 7, € [—1,1], and 1 represents strongly bright points which have at least two
symmetrical dark points from the both sides. Since we assume that roads are bright lines on a dark
background, we will consider the following contrast term

n, = max{n,, 0}, (3)

and {n,} is called the contrast image.

To reduce the noise induced by this simple local filter (including for example, village areas
with isolated high contrast points), we regularize the output by an adaptative smoothing. We first
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estimate locally the perpendicular orientation of the road, 6, given by the eigen vector corresponding
to the leading eigen value (the eigen value with maximal modulus) of the difference Hessian V,Z.

The constrast image is finally filtered as follows:

qup ,,2 ¢(9 -0 )

S
~p 72
a~P Tpq

up, = 1 — 2n, €[-1,1], (4)

and the resulting image {u,} is called the LRD image. Here 1y, is the distance between pixels p and
¢, ¢ ~ p means that ¢ € Oz(p){q = (¢, q;) € Q : max(|p; — ¢, |p; — ¢;|) < w}. w is a smoothing
parameter which is equal to 8 for all the results shown in this paper. qﬁ is defined as a w-periodic as
follows:

¢(0g — 0,) = max (0 | _ olfp = Ogmod(m ))7

. (5)
where 0y is a parameter depending on the road network curvature. It can takes different values
for mountain road or in urban areas. It is equal to 7/2 for the results presented in this paper.
The ouput of the LRD, u,, takes low values (close to -1), if most of contrasted neighbors n, have
spacially homogeneous orientation.

The result of this local road detector is shown on an aerial image on Fig. 2. The contrast filter
gives a noisy result (cf Fig. 2 top right). The estimated orientation is shown on pixels having a stricly
positive value on the contrast filter (see Fig. 2 bottom left), the segment size being proportional to
the corresponding eigen value. Finally, Fig. 2 bottom right shows the proposed local road detector,
which is considered as the data (the LRD image) for the point process model of the road network.
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Fig.1. Aerial image © IGN (top left) contrast ﬁlter (top rlght) local orientation (bottom left) and LRD (bottom
right).
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Although the LRD image gives an authentic view on the road network, it has evident defects:
gaps in the network and junctions, residual noise. To improve results we propose here a stochastic
algorithm based on point processes approach.

3. A POINT PROCESS FOR MODELING ROAD NETWORKS

Let V € IR? be the bounded continuous domain supporting €. We define the set of point
configurations in V', denoted I'y, as follows:

ry =, (6)
n=0

where I‘gf) = {y = {z1,...,2n}, x; € V} is the set of configurations with exactly n points. In
addition we suppose that configurations v € I'yy meet the following condition: there exists at most
one point from ~ at each pixel p € (2.

The pixel in € containing point € V' from the configuration 7 is denoted by p(z)

The energy function is a sum of three terms: the data term (8), the interaction term for connec-
tivity (11) and a prior (14) for managing curvature and junctions:

Uly) = Ugy) + Uilv) + Up(v)., (7)

the weighting factors between these three terms being included in their definition.

The data driven term has the following form:

van) = (U @) + U9 @), (8)

TeEY

U (@) = Ups + tpa),s (9)

0 if  has no neighbors from

U, s + min 1
°f VST Tay Y seppla) ply)] Us

U (z) = (10)

) otherwise

where ~jg is a neighborhood relation such that z ~3 y < d(z,y) < D, D being a parameter whcih
defines the density of points along the roads (D is set to 10 pixels in our experiments). The first
data term attracts or penalizes points depending on the LRD value taken at their location. The
first data term has a general form, whereas the second data term is specific for a problem under
consideration. The second data term considers the different neighbors from the configuration of a
given point and favors it if at least one path between this point and one of its neighbors corresponds
to "good"values of the LRD image. We consider the min operator to avoid penalizing neighboring
points lying on junctions or close parallel roads.

We now consider a connectivity condition generated by pair potential depending on the LRD
image and two additional parameters U, and U_:

U(y) = >, Ulz—y). (11)

xT,YyEY: T~y

NHOOPMAIIMOHHEBIE ITPOIECCBEI TOM 10 Ne3 2010



A POINT PROCESS FOR FULLY AUTOMATIC ROAD NETWORK DETECTION 251

U; is a repulsive energy on short distances |z — y| to prevent accumulation of points in the
configuration and an attractive energy on fitting distances |z — y|, and U; vanishes on large enough
distances:

AUy, ifd< i,
Uz —y) = ¢ A2—4d)Uy + (-1+4ad)U_, if +<d<i, (12)
(2-2d)U_, if 1 <d<1

where d = [z — |

. The repulsive property aims at reducing the number of points describing a road

(when A takes values close to 1), but should not penalize close roads or hidden parts of the road
(the case when A close to 0). On figure 3 left, lambda is equal to 1 and the energy is postive for
close point within the same road, whereas on figure 3 right, lambda is equal to 0, and the energy
is zero for small distances between points so that close points belonging to two different roads are
not penalized. Therefore, we introduce a modulating factor A depending on the LRD values in the
potential to improve detection of junctions and parallel roads:

Up(g) T U — 2Uy, T+
A= A(fphia) = 14 WO (220, (13)

15 15
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Fig.2. Energy function U;(|Jz — y|) for A =1 (left) and A = 0 (right).

To model curvature and junctions in road networks we introduce a priori term depending on the
number of neighbors of a given point as follows:

Up(y) =) Eln(x)), (14)

ey
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where n(z) is the number of neighbors of point z: n(z) = |y € y\{z} : d(x,y) < D], and:

E0)=E(1)=E; (15)
I
E2 (1—0> y lf9<90,
B(2) = o9 (16)
—FEs , if 6 > 6Oy,
T — 6
( 2
Ey|1-— % , ifo< 23@7
0
E(3) = , 2%0 (17)
I )
Ey - %, if 0 > 3
\ 3
E(n)=FEy x (n—3)ifn> 3. (18)

Here 6 = 6(x,~) is the minimal angle between vectors started at x and going to its neighbors.
6y is a parameter depending on the area under study (american city or sinuous hilly zone).

4. OPTIMIZATION PROCEDURE

We optimize the model using the multiple birth and death algorithm proprosed in [2]. The
algorithm finds configurations minimizing the energy function U(y) (7). It is a Markov chain on the
configuration space I'y, constructed as an approximation (in time) of a continuous time stochastic
birth and death dynamics in continuum embedded into simulated annealing procedure. At each
iteration, we consider transitions from the current configuration v to any configuration of the form
(v\71) Uw with 77 C . The corresponding transition probability is written as follows:

Priy = (\m)Uw) =+ w 'W'HH% 5 U e (19)

with ag(xz) = exp {B(U(y) — U(v\z)}, the energy function U(7) is defined by (7) and k(V,¢) is
the normalizing factor. The convergence of the Markov chain (19) to a measure concentrated on
the set of global minimizers of U(+) under a proper decreasing scheme of parameters 6 and 1/ has
been proved in [2|. One can see that the transition probability for the death of a particle depends
on the relative energy of the particle in the configuration, the transition probability of the birth is
spatially homogeneous and independent on both the energy and the temperature. The algorithm is
written as follows:

— Main program: initialize the inverse temperature parameter 3(5y = 1) and the discretization
step (09 = 250) and alternate birth and death steps

e Birth step: Add a realization of the Poisson process with intensity &

e Sorting step: once the birth step is finished, compute the data term Uél)(p(a:i)), x; € v of the
current configuration objects z;. Then, sort them, in the decreasing order, according to their
data energy.

e Death step: for each object x in the current configuration «, taken in the above order, compute
the death rate as follows:

dag(z)

d(z) = T+ (@) (20)
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then the point z is removed from the configuration with probability d(z).

e Convergence test: if the process has not converged, decrease the temperature and the dis-
cretization step by given factors and go back to the birth step. The convergence is obtained
when all the objects added during the birth step, and only these ones, have been killed during
the death step.

Note that the death step is performed after having sorted the objects. We first propose to
eliminate points corresponding to a low response of the associated local filter, which helps to escape
from local minima of the energy. This heuristic does not change the convergence properties but
allow a smarter scanning of the configuration space.

5. RESULTS

In this section, we present some results on different types of data: a synthetic image (see Fig. 5),
an aerial image (see Fig. 6) with 50cm resolution and a satellite image (see Fig. 6) with 10m
resolution. The presented results consists in the black points (point configuration maximizing the
density of the point process), whereas the gray lines represent non-zero interactions between points.

° Eo>1*Uof

e o o o o oo o o o o o |20 +3E+2U_ >242U,5

I 3E1 +4E>; +3U_- >4+ 4U,y
o o o o oo o Ey+U- <2+42Usy

Table. 1. Examples of local configurations: the energy associated with the configuration in the left column should be
higher than in the middle colummn. The right column gives the corrsponding constraint on parameters.

Note that the different parameters of the model have been calibrated, first by reducing the
parameter space by computing the energy associated with local configurations, which provide some
inequalities between the different parameters (see table 5), and then by trial and errors on the
synthetic image. On table 5, we compare local configurations plotted in the left column with local
configurations plotted in the middle column. For all cases except in the last line, the configurations
in the middle column is prefered, whatever the data are. For the case described in the last line, the
configuration in the middle column is prefered if the LRD does not detect a road under the dashed
line. The corresponding inequalities between the parameters are given in the right column. The same
values have been used for the real data (both aerial and satellite images), which demonstrates the
robustness of these values. These values are the following; U,y = 0.3, U~ = —1.0, Uy = 10, B = 2.0
and Es = 1.5. The average distance between points is taken as D = 15 whereas 6y = arcos(0.3).

On the final results, we can notice that points are added to the configuration even in the parts of
the network where data are missing (see roads in the top of the image on Fig. 6) due to tree shadow
or in the omitted part of the synthetic image (see Fig. 5). Junction and close parrallel roads are
also restored. From these results (points and interaction), a post-treatment, consisting in selecting
the real road network from the different interactions, remains to be done. Figure 6 shows the result
obtained with the Quality Candy model proposed in [7| on the image presented on figure 6. This
model, based on segments, presents a slightly better behavior for connecting the network in case of
large occlusion, compared to the result we obtained on figure 6. However, junction are not maken
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into account and are not detected. Moreover, the computation time using the Quality Candy model
is 23 minutes against 4 minutes for the proposed model.
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Fig. 3. Synthetic image (top) and extracted road network, the links represents interactions between points of the
solution bottom).

6. CONCLUSIONS

In this paper, we have proposed a new fast algorithm for road network extraction. We considered a
point process given by prior information on connectivity, curvature and junctions of a road network.
The data term is a result of a new local road detector. This new model performs well for recognition
of junctions and parallel roads as well as for the reconstruction of hidden parts of roads. The
optimization based on a recently proposed multiple birth and death algorithm allows the results

to be computed in a few minutes, that is much faster than other RIMCMC based algorithms,

e.g. Quality Candy model, etc. Finally, the parameter calibration has shown some robustness with
respect to images of different sensors.
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