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Abstract—An asymptotic lower bound is proved involving second additive term of the order√
| lnα| for the mean length of a controlled sequential strategy s for discrimination between two

statistical models in a very general nonparametric setting. Small parameter α is the maximal
error probability of s. A sequential strategy is constructed attaining (or almost attaining)
this asymptotic bound uniformly over the distributions of models including those from the
indifference zone. These results are extended for general loss function g(N) of the length N
of strategies growing not faster at infinity, than some power. Applications of this results to
change-point detection and testing homogeneity is outlined.

1. INTRODUCTION

1.1. Setting of the Problem

There are numerous references on sequential hypotheses testing and quick detection of param-
eter changes in stochastic system. The aim of the present paper is three-fold:

1. to construct second-order optimal sequential strategies strengthening the traditional ones;

2. to do this for a non-parametric setting with control, indifference zone and general risk;

3. to show applicability of the above ideas and constructions for change-point detection and testing
homogeneity.

We begin with a brief review of sequential discrimination between a finite set of distributions
which illuminates further general exposition.

Let us outline the setting of the problem following [1] where first order optimal tests were
constructed.

No control case. Let (X,B, µ), X ⊂ R, be a probability space, (P, d(·)) be a metric space,
where P is a subset of the set A of probability measures absolutely continuous mutually and with
respect to µ. Their densities are denoted by the corresponding small letters.

Denote by EP f(X) the expectation of f(X), X is a random variable (RV) with distribution P .

Let I(P,Q) = EP log p(X)
q(X) be the relative entropy (Kullback–Leibler divergence) with usual conven-

tions (logarithms are to the base e, 0 log 0 = 0 etc), and the metric d be I-uniformly continuous on
P, i.e. for every ε > 0 there exists δ = δ(ε) > 0 such that for every pair P,Q from P if I(P,Q) < δ,
d(P,Q) < ε.

The set P is partitioned into sets P0, P1 and the indifference zone P+ = P \ (P1 ∪ P0). We
test H0 : P ∈ P0 versus H1 : P ∈ P1, any decision is good for P ∈ P+.

1 This work was supported by the grant RFBR no. 09-07-00180.
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Suppose that the distance between the hypotheses is positive, i.e.

inf
P∈P0,Q∈P1

d(P,Q) ≥ δ0 > 0. (1.1)

A strategy s consists here of the stopping time N and a measurable binary decision δ, δ = r, r =
0, 1, means that Hr is accepted. We assume that observations Xi, i = 1, . . . , n are independent and
P -identically distributed (i.i.d.(P)), P ∈ P, when N > n.

For an α > 0 introduce α-strategies s satisfying

Condition G(α) : maxr=0,1 supP∈Pr
PP (δ = 1− r) ≤ α.

Remark 1. For simplicity of notation we confine ourselves to testing two hypotheses with error
probabilities of the same order. A generalized condition G(α, c,d) : supP∈Pr

PP (δ = 1 − r) ≤
crα

dr , cr > 0, dr > 0 can be studied similarly [2]. Generalization to testing several hypotheses see
e.g. [3].

Let Es
PN be the mean length (MEL) of a strategy s. Our first aim is to find an expansion of

the lower bound for MEL as α → 0.

Define I(P,R) = infQ∈R I(P,Q) for R ⊂ P; A(P ) = P1−r for P ∈ Pr as the alternative set
in P for P . For P ∈ P+, if I(P,P0) ≤ I(P,P1), then A(P ) = P1, otherwise, A(P ) = P0. Finally
k(P ) = I(P,A(P )).

We prove in Theorem 1 that for any α-strategy s under mild regularity condition

Es
PN ≥ | logα|

k(P )
+O(

√
| logα|). (1.2)

In Theorem 3 under stricter regularity conditions we construct the α-strategy s∗ attaining equality
in (1.2).

Controlled experiments. For controlled testing we suppose that P from P is a set of measures
P = {P u, u ∈ U}, P u ∈ A, labeled by controls u ∈ U = {1, . . . ,m}. We use the notation: pu(x) is
the density function of measurements under control u, U∗ is the set of mixed controls.

After obtaining the n-th observation experimenter either decides to stop or chooses mixed
control for the (n + 1)-th experiment. Let Fn be the σ-algebra generated by the observations
and controls up to the time n. We suppose that the (n + 1)-th experiment is predictable, i.e.
corresponding distribution on U is Fn-measurable, strategy length N is a stopping time under the
flow Fn, and a decision δ is FN -measurable. A strategy s consists now of a rule of mixed control
choice u(·), stopping time N , and decision δ. For more details about constructing a probability
space and a controlled strategy see [4].

We assume that metrics du are given which are I-uniformly continuous on Pu = {P u : P ∈
P} for each u with respect to the relative entropy and (1.1) holds for the metric d(P,Q) =
maxu∈U du(P

u, Qu).

Let u = (κ1, . . . , κm), where κi ≥ 0 and
∑m

i=1 κi = 1, be a mixed control and

Iu(P,Q) =
m∑
i=1

κiI(P
i, Qi).

Introduce
k∗(P ) = max

u∈U∗
Iu(P,A

u(P )) > 0, (1.3)

and u∗ = u∗(P ) as a control such that

k∗(P ) = Iu∗(P,Au∗
(P )),
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where Au∗
(P ) is the alternative set in Pu∗

for P u∗
, and (1.1) implies the inequality in(1.3).

Our main result for controlled sequential testing consists in proving a modified lower bound
(2.1) and constructing a second order optimal α-strategy s satisfying (2.1).

1.2. Some Results for Finite P

The sequential controlled discrimination between distributions from finite set P was pioneered
in [5]. Subsequent development of first order asymptotically optimal sequential procedure (AOSP1)
with the MEL Es

PN satisfying Es
PN = | log(α)|k(P )−1

(
1 + o(1)

)
is surveyed [6] in a Bayesian

framework. All these results follow from the results of the present paper. It was shown in [8], [7] etc.
that the wideness of the class of AOSP1 allows excessive values of the risk function for finite samples.
Constructing procedures of the higher (second) order of optimality (AOSP2) became desirable. The
results of [9] on Bayesian sequential discrimination between a finite number of distributions ( simple
hypotheses) imply that (1.4) holds for the optimal strategy with some nonnegative K. Under the
additional conditions a strategy is constructed in [10] with MEL exceeding the optimal one in
O(log | log(α)|).

No-control case. Outlining these results for a finite set P we begin with a no-control case.

Introduce z(P,Q, x) = log p(x)
q(x) , Ln(P,Q) =

∑n
i=1 z(P,Q, xi). Suppose that k(P ) = I(P,Qi), i =

1, . . . , l, Qi ∈ A(P ).

Proposition 1. Let RV z(P,Q, x) possess fourth moments for all P and Q. For any α-strategy s
if l = 1 then

Es
PN ≥ | log(α)|

k(P )
+O(1),

and if l > 1 then

Es
PN ≥ | log(α)|

k(P )
+K

√
| log(α)|
k(P )

(
1 + o(1)

)
, (1.4)

where K = E(g(ζ)) > 0, ζ = (ζ1, . . . , ζl) is a normally distributed RV with mean 0 and covariance
matrix Σ = (Σij),Σij = EP (z(P,Qi, x)z(P,Qj , x)), g(ζ) = maxi=1,...l ζi.

Sketch of proof (full proof see in [11]). Define Ln(P ) = (Ln(P,Q1), . . . , Ln(P,Ql)), x0 =
log(α)1,1 := (1, . . . , 1).

Introduce the first time τ , when likelihood ratios of the true distribution P with respect to
any alternative exceed the prescribed level | log(α)|. It is not a stopping time (for unknown P ) but
it is shown in ([9], Lemma 5.1) that any strategy has MEL exceeding EP τ + const for all α.

Therefore the lower bound for MEL is reduced to minimizing the mean time until the first
entry into R+ = {x ∈ Rl : xi ≥ 0, i = 1, . . . , l} for the process x0 + Ln(P ).

Applying Keener’s lower bound ([9], Theorem 2) for our minimization problem we get the
results of Proposition 1.

Controlled experiments. Let for simplicity the optimal control u∗ be unique and u1, . . . , ut be
controls in U such that u∗(P ) = (κ1, . . . , κt, 0, . . . , 0), κi > 0, and

∑t
i=1 κi = 1.

Introduce vectors µi = (I(P i, Qi
1), . . . , I(P

i, Qi
l)), i = 1, . . . , t, where Qj ∈ A(P ) be such that

Iu∗(P )(P,Qj) = k(P ), j = 1, . . . , l. Usually it holds l ≥ 2 for a controlled discrimination.

The regular case is defined to be such that µi, i = 1, . . . , t, span the subspace L and dim(L) = l.
In degenerate case dim(L) < l.

An example of degenerate case is the following: P = {P0, P1, P−1}, P0 = {P0}, P1 = {P1, P−1},
U = {1, 2}, and I(P u

0 , P
u
r ) = I, r = 1,−1, u = 1, 2.
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Let Fst(P,x) be the minimal value of the function

f =

t∑
i=1

κi (1.5)

under the conditions

κi ≥ 0, i = 1, . . . , t,x+

t∑
i=1

κiµi ≥ 0, (1.6)

and

g(ζ) := Fst(P,x0 + ζ)− | logα|k(P )−1.

Proposition 2. Let RV z(P u, Qu, x) possess fourth moments for all P , Q, and u. For any α-
strategy s in the regular case

Es
PN ≥ | log(α)|

k∗(P )
+O(1),

while in the degenerate case

Es
PN ≥ | log(α)|

k∗(P )
+K

√
| log(α)|
k(P )

(
1 + o(1)

)
, (1.7)

where K = E(g(ζ)) > 0, ζ = (ζ1, . . . , ζl) is a normally distributed RV with mean 0 and covariance
matrix Σ = (Σj1j2),Σj1j2 =

∑t
i=1 κiEP (z(P

i, Qi
j1
, x)z(P i, Qi

j2
, x)).

Sketch of proof (full proof see in ([11])). For finite set U of controls the asymptotically optimal
control rule should provide the fastest approach to the positive octant R+ by the vector composed
of likelihood ratios. This problem was studied in [12]. A more simple non-stochastic control problem
analogous to (1.5), (1.6) was studied in [9] for sequential discrimination in Bayesian setting.

Let Iu∗(P )(P,Q) > 0 for all P,Q ∈ P, P ̸= Q. A strategy s∗ with MEL | log(α)|
k(P ) + O(1) can be

constructed for the regular case under the condition of Proposition 2. We have not enough space
to give full description of the strategy and give principal moments only (details see in [11]).

The length of the first stage is N1 = A log(| log(α)|) where A is such that the probability of
an error of specifying P is less then | log(α)|−2.

The control rule at the first phase is as follows. This phase has a random number of sub-
stages. Every sub-stage begins at the moment of changing the maximum likelihood estimate (ME)
P̂ based on the previous measurements and the control u∗(P̂ ) is used at this sub-stage. Only the
last sub-stage’s measurements will be used for the subsequent controls.

Introduce L(1) = (L(P̂ , Q1), . . . , L(P̂ , Ql)), where P̂ is the ML-estimate of P at the end of the
first stage, {Q1, . . . , Ql} = A(P̂ ), L(P̂ , Qj) =

∑N1
i=τ z(P̂

ui , Qui
j , xi), τ is a starting time of the last

sub-stage and ℓ is a straight line through the points 0 and x0 + L(1). On the next two phases we
use in general the optimal control from [12] where ℓ is a switching line of the control rule.

Define Ln = (Ln(P̂ , Q1), . . . , Ln(P̂ , Ql)), where Ln(P̂ , Qj) = L(P̂ , Q1) +
∑n

i=1 z(P̂
ui , Qui

j , xi).

We stop the phase at the first time when the process x0 + Ln enters R+ and is sufficiently
close to the line ℓ. If n > 2 (minP∈P k(P ))−1 | log(α)| then the procedure fails and we return to the
starting point.

If the third stage is successful then we stop the measurements. The decision rule consists of
accepting the hypothesis containing P̂ .
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In the degenerate case it is necessary to use more complicated control for getting an α-strategy
with the property

Es
PN =

| log(α)|
k∗(P )

+K

√
| log(α)|
k∗(P )

+O(1), (1.8)

where K is the same as in (1.7). In contrast to the regular case the optimal control from [12] does
not apply for the last phase of the strategy with condition (1.8). A full description of the procedure
under the condition (1.8) is given in [11].

A Bayesian controlled sequential discrimination between parametric set P was studied in [13].
It is proved in [13] that the principal term of the risk function of AOSP1 is the same as for a
finite P. Indifference zones were incorporated in [14]. Similar results were obtained for sequential
hypotheses testing with an indifference zone in [15] for exponential families P. A generalization
onto non-parametric space P was done in [16] under an assumption that the set P is convex.

In [1, 17] an AOSP1 was found for non-parametric P with an indifference zone under general
conditions of regularity. We construct AOSP2 in present paper under additional conditions of
regularity.

1.3. Brief Outline of Change-Point Detection

Our procedure is also applicable for the non-parametric detection of abrupt change in the
distribution of i.i.d. sequence without an indifference zone. We use the methodology outlined
in [18].

Let the observations X1, . . . , Xn, . . . be independent, and for n < ν all have a distribution
P0 ∈ P0, while all Xn have an unknown distribution P1 ∈ P1 for n ≥ ν, where ν is an unknown
integer, and (1.1) hold.

Let N be a change-point estimate, and a+ = a, if a ≥ 0, and a+ = 0 otherwise. Introduce the
functional

Ēs(N) = sup
ν≥1

ess supEs
P1

(
(N − ν + 1)+ |X1, . . . , Xν

)
for P ∈ P1 (with index P1 suppressed) as an optimality criterium of the strategy s under the
restriction that for a given α > 0

sup
P∈P0

Es
P (N) ≥ α−1. (1.9)

Let s be a one-sided sequential strategy for testing the hypothesis H1 : P ∈ P1 versus H0 :
P ∈ P0 with a decision δ such that supP∈P0

PP (δ = 1) ≤ α and T be its stopping time. For
every t we denote by Tt the stopping time of s based on the observations Xt = (xt, xt+1, . . . ).
Define N = inft(Tt + t) as the stopping time of change-point detection. By Theorem 2 in [18]
Es

P (N) ≥ α−1 for all P ∈ P0. Hence asymptotically optimal strategies for the hypotheses testing
are also asymptotically optimal for the change-point detection under the condition (1.9).

Theorem 3 in [18] states under the condition (1.9): Ēs(N) ≥ | logα|I−1
1 (1 + o(1)), where

I1 = I1(P1) = I(P1,P0), if the condition C1 in section 2 is satisfied.

In [3] a more extensive survey of connections between the sequential hypotheses testing and
the change-point detection is given for finite or parametric P.

We generalize these results for a non-parametric setting and study AOSP2 of change-point
detection in subsection 5.2.

2. LOWER BOUND FOR NON-PARAMETRIC HYPOTHESES TESTING

C1. There is c > 0 such that Eu
P (z(P u, Qu, X))2 < c for all P ∈ P, Q ∈ P, and u ∈ U .
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We prove the following lower bound extending that of [17].

Theorem 1. i.Under the condition C1 any α-admissible strategy s for the no-control problem
satisfies (1.2) for every P ∈ P.

ii. For controlled experiments and every P ∈ P the following inequality holds

Es
PN ≥ | logα|

k∗(P )
+O(

√
| logα|). (2.1)

Proof. i. Choose Qn ∈ A(P ) such that I(P,Qn) ≤ k(P ) + n−1.

Two cases are considered separately

A1. P ∈ P+,

A2. P ∈ Pr, r = 0, 1.

In the first one we assume for definiteness that Qn ∈ P0. From the definition of A(P ) it follows
that there exists Q′

n ∈ P1 such that I(P,Q′
n) ≤ I(P,Qn) + n−1.

Introduce

Lk(P,Qn) =

k∑
i=1

z(P,Qn, xi)

and

M0(α) =

{
inf{k : Lk(P,Qn) ≥ − logα},
∞ if supk Lk(P,Qn) < − logα.

We define M1(α) similarly by replacing Lk(P,Qn) with Lk(P,Q
′
n).

It follows from C1 that the upper bound for the overshoot of the level | logα| (obtained in [12])
does not depend on α. Hence from Wald identity we get

Es
PM0(α) ≤

| logα|+ C1

I(P,Qn)
, (2.2)

Es
PM1(α) ≤

| logα|+ C1

I(P,Q′
n)

, (2.3)

with the same constant C1 for all α and n.

Introduce Ni = min (Mi(α), N{D = 1− i}), where N{D = 1 − i} = N if Hi is rejected and
N{D = 1− i} = ∞ if Hi is accepted. It follows from these definitions that

M −N ≤
1∑

i=0

(Mi −Ni), (2.4)

where M = min(M0,M1). Similarly to [19] (p. 197) we get

Es
PN0 ≥

| logPQn(N0 < ∞)|
I(P,Qn)

, Es
PN1 ≥

| logPQ′
n
(N1 < ∞)|

I(P,Q′
n)

. (2.5)

The error probability of testing simple hypotheses H ′
0 : P = Qn versus H ′

1 : P = Q′
n does

not exceed α for any α-strategy. Besides, the definition of the stopping times Mi implies that
Ps

Qn
(M0 < ∞) ≤ α, Ps

Q′
n
(M1 < ∞) ≤ α. Hence

Ps
Qn

(N0 < ∞) ≤ 2α,Ps
Q′

n
(N1 < ∞) ≤ 2α (2.6)

and we get from (2.2)-(2.6):

Es
P (M −N) ≤ 1 + C1

I(P,Qn)
+

1 + C1

I(P,Q′
n)

. (2.7)
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Thus (2.7) entails:

Es
PN ≥ Es

PM − C2, (2.8)

with the same constant C2 for all α and n.

Introduce In = max(I(P,Qn), I(P,Q
′
n)). The definitions of Qn and Q′

n imply that

In ≤ k(P ) + 2n−1. (2.9)

It follows from the definitions of the stopping times Mi and the values In that

| logα| ≤ max(LM (P,Qn), LM (P,Q′
n)) = MIn+

max(M(I(P,Qn)− In) + ζM ,M(I(P,Q′
n)− In) + ζ ′M ) ≤ MIn +max(ζM , ζ ′M ), (2.10)

where ζk = Lk(P,Qn)− kI(P,Qn) and ζ ′k = Lk(P,Q
′
n)− kI(P,Q′

n) are martingales. The following
inequalities follow for these martingales from condition C1 in Appendix

Es
P |ζM | ≤ C3(E

s
PM)

1
2 ,Es

P |ζ ′M | ≤ C3(E
s
PM)

1
2 , (2.11)

with the same constant C3 for all α and Es
PM . Therefore, from (2.10) we get

Es
PM ≥ | logα|I−1

n −Es
P

(
|ζM |+ |ζ ′M |

)
I−1
n .

Using the bounds (2.11) we get

Es
PM ≥ | logα|I−1

n − C4(E
s
PM)

1
2 ,

with the same constant C4 for all α and n. If we replace Es
PM with its upper bound using (2.2) and

(2.3), then we get a lower bound

Es
PM ≥ | logα|I−1

n − C5(| logα|)
1
2 , (2.12)

with the same constant C5 for all α and n. It follows from (2.9), (2.8), and (2.12) that

Es
PN ≥ | logα|k(P )−1 − C5(| logα|)

1
2 − C2 − 2k(P )−2| logα|n−1.

If a sequence n = n(α) is chosen such that | logα|
1
2n−1 → 0 for α → 0, then the theorem

follows from the last inequality.

For the case A2 the theorem follows directly from the Wald lower bound for the MEL of the
sequential ratio likelihood probability test. The proof of i. is complete.

Proof of ii. We outline only the modifications in the proof i. sufficient for proving ii. similarly
to [17]. Let u∗ = u∗(P ) be a control that provides the maximum in (1.3) and Qn be a sequence of
measures in A(P ) such that

Iu
∗
(P,Qn) ≤ k∗(P ) + n−1.

We prove the theorem for P ∈ P+, other cases are straightforward.

Let Qn ∈ P0, Q
′
n ∈ P1 be such that Iu

∗
(P,Q′

n) < Iu
∗
(P,Qn) as in the proof without control,

and Mi(α) be defined as in the previous proof based on the modified statistics

Lk(P,Qn) =

k∑
i=1

z(P u(i), Qu(i)
n , xi),
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where u(i) is the value of the control for the i-th experiment. We suppose that for Mi(α) > N we
use control u∗ in experiments after N for definiteness.

If Ni are defined as in the proof of Theorem 1, then (2.4) is valid. Similarly to (2.5) we get

ES
P

N0∑
i=1

z(P u(i), Qu(i)
n , xi) ≥ | logPQn(N0 < ∞)|, (2.13)

ES
P

N1∑
i=1

z(P u(i), Q′u(i)
n , xi) ≥ | logPQ′

n
(N1 < ∞)|. (2.14)

Define

κ
(i)
l = (ES

PNi)
−1

∞∑
j=1

PS
P (u(j) = l, j ≤ Ni)

and κ∗(i) = {κ(i)1 , . . . , κ
(i)
m }, i = 0, 1. From the theorem 2.2.1 in [4] and (2.13), (2.14) we get

ES
PN0I

κ∗(0)(P,Qn) ≥ | logPQn(N0 < ∞)|, (2.15)

ES
PN1I

κ∗(1)(P,Q′
n) ≥ | logPQ′

n
(N1 < ∞)|. (2.16)

Formulas (2.2), (2.3) may be rewritten as

ES
PM0(α) ≤

| logα|+ C1

Iκ′(0)(P,Qn)
, (2.17)

ES
PM1(α) ≤

| logα|+ C1

Iκ′(1)(P,Q′
n)

, (2.18)

where the control κ′(i) is defined as κ∗(i), but Ni are replaced with Mi(α). It follows from the
definitions that

Iκ
∗(0)(P,Qn)− Iκ

′(0)(P,Qn) =
ES

P (M0(α)−N0)

ES
PN0

(
Iκ

′(0)(P,Qn)− Iu
∗
(P,Qn)

)
and an analogous inequality is valid for Iκ

∗(1)(P,Q′
n)− Iκ

′(1)(P,Q′
n). Hence it follows from (2.15)–

(2.18) that
ES

P (Mi(α)−Ni) ≤ C6,

with the same constant C6 for all α and n.

The end of the proof is the same as for the no-control problem.

3. ASYMPTOTICALLY OPTIMAL NON-PARAMETRIC HYPOTHESES TESTING

We use the following regularity conditions:

C2. There exist t > 0 and f > 0 such that for all u ∈ U and P ∈ P
EP

(
supQ∈P exp(−tz(P,Q,X))

)
≤ f.

C3. z(P,Q, x) is differentiable w.r.t. x and

D =

∫
X
z1(x) (a(x)b(x))

1/2 dx < ∞,

where

z1(x) = sup
Q∈P

∣∣∣∣∂z(P,Q, x)

∂x

∣∣∣∣ , sup
P∈P

∫ x

−∞
p(t)µ(dt) ≤ a(x), sup

P∈P

∫ ∞

x
p(t)µ(dt) ≤ b(x).
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C4. There exist the values b ≥ 0 and K1 = K1(b) such that for every n the estimate p̂ = p̂n of
the density function of i.i.d.(P) observations X1, . . . , Xn with P ∈ P can be constructed such that

EP (I(P, P̂ )) ≤ K1n
−b. (3.1)

Remark 2. If for example the set X is the interval [0, 1] and for P ∈ P the function log p is
periodic and belongs to the Sobolev space W r

2 on X, r ≥ 1, then in [20] verified the condition C4
with b = 2r

1+2r . Therefore, if additionally to C3 we assume that∫
X

(
∂z(P,Q, x)

∂x

)2

dx ≤ c < ∞

with the boundary condition z(P,Q, 0) = z(P,Q, 1) then C4 is valid for b = 2
3 .

If P determines a smooth quasi-homogeneous family of density functions ([21]), then C4 is valid
if we use the methodology of [21] for density’s estimation with b ≥ 1

2 depending on smoothness of
P.

Remark 3. Usually the estimate P̂ is constructed via approximating P by a parametric expo-
nential family of distributions Am of dimension m and using the ML-estimation under the assump-
tion that P ∈ Am. Then

I(P, P̂ ) ≤ γ1m
−r1 + γ2

mr2

n
(3.2)

where γ1 and γ2 are numbers, r1 depends on smoothness of P, and r2 depends on a choice of a
basis for the family Am. Optimization of (3.2) in m gives (3.1).

Now we introduce our strategy s∗ = s∗(β, n) depending on the parameters β and n. Procedure
s∗ consists of conditionally i.i.d. loops. The loop terminating by the event (3.3) is the final loop of
s∗. Every loop contains two phases.

Based on the first L = [
√

| lnβ|] + 1 observations of a loop we estimate the density function
P .

We perform the following test in the second phase. Let us numerate measurements of the
second phase anew and introduce Lk(P̂ , Q) =

∑k
i=1 z(P̂ , Q, xi), where P̂ is the estimate of P in

the first phase. We stop observations at the first moment M such that

inf
Q∈An(P̂ )

LM (P̂ , Q) > − log β (3.3)

or
M > 2k(P̂ )−1| log β| (3.4)

and accept the hypothesis Hr (i.e. δ = r) if (3.3) holds and 1− r is the index of the set A(P̂ ). If
(3.4) holds then we begin a new loop.

Theorem 2. For every P ∈ P under the conditions C1-C4 and appropriate parameters, s∗ is
an α-strategy and

Es∗
P N ≤ | logα|

k(P )
+K2| logα|1−b/2 +K3

√
| logα| (3.5)

with the same constants K2 and K3 for all α.

Proof. Let Fk be the σ-algebra generated by the first k observations on the second phase and all
previous observations, T be an event that A(P̂ ) = A(P ), and F be its complement. It follows from
(1.1) and well-known Sanov theorem on large deviations for the empirical distribution functions
of i.i.d. observations that

Ps∗
P (F|F0) ≤ C1β

b1 , (3.6)
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where C1 and b1 are positive numbers depending on δ0 and P only.

From the definition of Lk(P̂ , Q) it follows

Es∗
P (Lk(P̂ , Q)− Lk−1(P̂ , Q)|Fk−1, T ) = I(P,Q)− I(P, P̂ ). (3.7)

Denote

ξ(k) = Lk(P̂ , Q)− Lk−1(P̂ , Q)− I(P,Q) + I(P, P̂ ), Ξ(k) =

k∑
l=1

ξ(l). (3.8)

It is obvious that Ξ(k) is a martingale and under the event T the conditions of the theorem 8 are
satisfied. Therefore, by this theorem

Es∗
P

(
sup

Q∈A(P̂ ),k≤l

|Ξ(k)|

∣∣∣∣∣F0, T

)
≤ K4

√
l, (3.9)

with the same K4 for all l.

Theorem 6 ([17]) for the processes Ξ(k) with ε = 2k−1
0 − k(P )I(P,Q) − I(P, P̂ )), k0 =

infP∈P k(P ) > 0, implies the existence of a positive number b2 such that

Ps∗
P (M = M ′′|F0, T ) ≤ C2β

b2 , (3.10)

with the same C2 for all β.

First we estimate the mean length Es∗
P N2 of the second phase which is the principal part of

the total mean length. We get from (3.9) similarly to the proof of the theorem 3 in [22]

Es∗
P (N2|F0, T ) ≤ | log β|

k(P )− I(P, P̂ )
+ C3

√
| log β| ≤

≤ | log β|
k(P )− ε

+ C3

√
| log β|, (3.11)

where ε = K1| log β|−b/2 and C3 is independent of β.

Since the second phase is truncated

Es∗
P (N2|F0,F) ≤ 2| log β|

k(P̂ )
≤ 2| log β|

k0
= L2. (3.12)

The truncation probability of the second phase based on observations of a given loop is bounded
from above by C1β

b1 + C2β
b2 = p2. The first summand of the left-hand side is estimated in (3.6).

The second summand’s expression follows from (3.10).

Since all attempts to complete the second phase of s∗ with the final decision are i.i.d., their
amount is distributed geometrically. Hence for the mean length Es∗

P N we get the following upper
bound based on (3.11), (3.12) and the definition of the first phase

Es∗
P N ≤

| log β|(k(P ))−1 + L+ L2p2 + C4| log β|ε+ C3

√
| log β|

1− p2
, (3.13)

where C4 is independent of β.

Let us now bound the error probability. It follows from the definition of s∗ that

Ps∗
P (D = 1− r|F0, T ) = Ps∗

P

(
LM (P̂ , P ) > | log β|

∣∣∣F0, T
)
=
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Es∗
P

(
Es∗

P̂

(
exp (−LM (P̂ , P ))I(LM (P̂ , P ) > | log β|)

))
≤ β.

Thus:

Ps∗
P (D = 1− r) ≤ β

1− p2
. (3.14)

Inequality (3.14) entails that s∗(β, n) is α-strategy under β satisfying

β

1− p2
≤ α. (3.15)

Since p2 → 0 as α → 0, we have | log β| ≤ logα| + 1 under sufficiently small α. Hence
(3.13) implies that

Es∗
P N =

| logα|
k(P )

+K2| logα|1−b/2 +K3

√
| logα|

for the parameters of s∗(β, n) chosen as specified by (3.15).

Proof of Theorem 2 is completed.

We see that the second term in (3.5) is generally of larger order of magnitude than in (2.1).
It is remedied by a procedure with more than two phases. The amount of phases depends of b.

Theorem 3. For every P ∈ P under the conditions C1-C3 and C4 with b ≥ 1
2 and appropriate

parameters the multi-phased strategy s∗ is an α-strategy and

Es∗
P N ≤ | logα|

k(P )
+O(

√
| logα|).

Proof. The three-phased procedure is as follows. The first phase is the same as before. On the

second phase we use N2 = [| logα|
1+b
2 ] + 1 measurements and calculate the statistics

L(2)(P̂ , Q) =

N2∑
i=1

z(P̂ , Q, yi).

Let ˆ̂p(y) be the estimate of p after the second phase. Then we use the statistics

L
(3)
k (

ˆ̂
P ,Q) = L(2)(P̂ , Q) +

k∑
i=1

z(
ˆ̂
P,Q, yi)

and stop observations as in the two-phased strategy with Lk(P̂ , Q) replaced by L
(3)
k (

ˆ̂
P,Q). The

decision and possible call for a new loop are the same as for the two-phased procedure.

The procedure with three phases has the second term of the order max{1
2 ,

2−b2−b
2 }. Therefore

if b ≥
√
5−1
2 then the procedure with three phases has the second term of the order 1

2 .

Similarly the n-phased procedure can be constructed. We use n − 1 phases for estimating P .
Let di =

1−bi

2(1−b) . If the i-th phase uses Ni = [| logα|di ] + 1 measurements then the second term has

the order max{1
2 ,

2−3b+bn

2(1−b) }.
For completing the proof we need to replace N2 with

∑n
i=2Ni in (3.11). Thus:

Es∗
P (N2|F0, T ) ≤

n−1∑
i=2

Es∗
P

(
Ni

k(P )− I(P, P̂i−1)
|F0, T

)
+

+Es∗
P

(
| log β| −

∑n−1
i=2 Ni

k(P )− I(P, P̂n−1)
|F0, T

)
+ C3

√
| log β|,
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where P̂i is the estimate of P after the i-th phase. Therefore

Es∗
P (N2|F0, T ) ≤ | log β|

k(P )− ε
+O(

√
| log β|),

where ε = K1| log β|−bdn−1 , . If we take n such that bdn−1 ≥ 1
2 then

Es∗
P (N2|F0, T ) ≤ O(

√
| log β|). (3.16)

If we replace (3.11) with (3.16) then the proof is implied by that of Theorem 2.

4. NON-PARAMETRIC HYPOTHESES TESTING WITH CONTROL

Let the following regularity conditions be satisfied.

C5. Condition C4 is valid with the same values b and K1(b) for every u ∈ U . Additionally to
C4 there exists a sequence of mixed controls un(P ), c ≥ 0 and K2 = K2(c) such that un(P̂n) is a
measurable control for every n and i.i.d.(P) observations X1, . . . Xn with P ∈ P, and

EP | inf
Q∈A(P )

(Iun(P̂n)
(P,Q)− k∗(P ))| ≤ K2n

−c.

Remark 4. In C5 we assume that the estimate P̂n permits us to approximate u∗(P ) in such a
way that the preceding bound holds. It can be done e.g. by approximating a quasi-homogeneous
smooth P as in Remark 3 by finite-dimensional exponential families using the methodology of [21].

Our procedure S∗ = S∗(β, n), as before, has conditionally i.i.d. loops until the final success
almost similar to (3.3). If an analogue of (3.4) holds, a new loop begins. Every loop contains two
phases.

For every u ∈ U based on L = [
√

| lnα|] + 1 independent observations with this control we

estimate measure P u in the first phase as in the previous case. Let P̂ u be the estimate for P u as
before.

We use the control u(i) = uL(P̂ ) for the i-th measurement of the second phase and stop
observations and take the decision δ as in the strategy s∗.

Theorem 4. Under the conditions C1-C5 for every P ∈ P under appropriate parameters S∗ is
an α-strategy and

ES∗
P N ≤ | logα|

k∗(P )
+K3| logα|1−d/2 +K43

√
| logα|

where d = min(b, c), the numbers K3 and K4 do not depend on α.

Proof is similar to that of Theorem 2. Since we use the control uL(P̂ ) instead of u∗(P ),
(3.11) takes the form

ES∗
P (N2|F0, T ) ≤ | log β|

k∗(P )− ε
+O(

√
| log β|),

where ε = K1| log β|−
b
2 +K2| log β|−

c
2 .

A further strengthening of the upper bound in theorem 4 can be obtained by studying multi-
phased strategies as in section 2.

5. EXTENSIONS AND APPLICATIONS

5.1. General Risk

Our theorems 1 and 2 can be extended to a general loss function with power growth of the
strategy length. Let g : R+ → R+ be continuous, increasing to infinity and
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i. g(an) ≤ Kga
kg(n) for all a > 1, all large n, and some positive Kg and k;

ii. 1− cg
k
n ≤ g(n+k)

g(n) ≤ 1 + Cg
k
n , with the same constants cg and Cg for all n and k.

Let Es
P g(N) be the risk of the strategy s.

Theorem 5. Under the conditions C1 any α-admissible strategy s satisfies

Es
P g(N) ≥ g

(
| logα|
k(P )

)(
1 +O(

1√
| logα|)

)
.

Under the conditions C1-C4 and appropriate parameters, s∗ is an α-strategy and

Es∗
P g(N) ≤ g

(
| logα|
k(P )

)(
1 +K2| logα|−b/2 +K3| logα|−

1
2

)
,

with the same constants K2 and K3 for all α.

Proof is a rather straightforward generalization of that for Theorem 1 and 2 along the lines
of [17].

5.2. Change-Point Detection

A version of our procedure s∗ = s∗(β, n) is also applicable for the non-parametric detection of
abrupt change in the distribution of i.i.d. sequences as outlined in section 1.3.

Denote Xt = (xt, xt+1, . . . ), where xi is the i-th measurement. For every t ≥ 1 based on the
sequence of measurements Xt we construct one loop of the procedure s∗ = s∗(β, n) which is denoted
by s∗t (β, n) for estimating Nt. The loop contains two phases.

Based on the first L = [
√

| lnβ|] + 1 observations of the loop we construct an estimate P̂ of
the density function P as outlined in section 2.3.

If P̂ ∈ P0 then we stop the loop and take Nt = ∞. If P̂ ∈ P1 then we perform the following
test in the second phase. Let us numerate measurements of the second phase anew and introduce
Lk(P̂ , Q) =

∑k
i=1 z(P̂ , Q, yi).

We stop observations at the first moment M such that

inf
Q∈P0

LM (P̂ , Q) > − log β (5.1)

or
M > 2k(P̂ )−1| log β| (5.2)

and take Nt = t+M if (5.1) holds and 1− r is the index of the set A(P̂ ). If (5.2) holds then we
take Nt = ∞.

Theorem 6. Under the condition C1 for sufficiently small α we have the following lower bound
Ēs(N) ≥ | logα|I−1

1 +O(log | logα|).
Under the conditions C1-C4 and appropriate parameters of s∗ the procedure for the change-

point detection’s problem is an α-strategy and

Ēs(N) ≤ | logα|I−1
1 +K5| logα|1−b/2 +K6

√
| logα|, (5.3)

with the same constants K5 and K6 for all α.

Proof. The lower bound follows from the proof in [18] if we put ε = | logα|−1.

The condition (1.9) follows from the theorem 2 in ([18] and (5.3) follows from our Theorem 2.

For a general loss function from section 5.1 and Es∗
P g((N − ν + 1)+) the result of Theorem 4

implies an upper bound for a general risk of the change-point detection.
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5.3. Sequential testing homogeneity

Let independent observations may be taken from m ≥ 2 populations with distributions
P1, . . . , Pm on (X,B, µ), Pi ∈ P, and the conditions C1-C4 valid for P. We test H0 : P1 = · · · = Pm

versus H1 : maxi,j d(Pi, Pj) ≥ ∆ > 0, where d is I-uniformly continuous distance on P. Apply-
ing control u means that we take an observation from the u-th population. This is a particu-
lar case of controlled experiments for testing the hypothesis H0 : P ∈ P0 versus H1 : P ∈ P1

with the indifference zone P ∈ P+ where P = (P1, . . . , Pm), Pi ∈ P, P0 = {P : P1 = . . . , Pm},
P1 = {P : maxi,j d(Pi, Pj) ≥ ∆ > 0}, P+ = {P : 0 < maxi,j d(Pi, Pj) < ∆}.

If P ∈ P0 then

k∗(P ) =
1

m
inf

Q,R:d(Q,R)≥∆
(I(P,Q) + I(P,R)) (5.4)

and u∗(P ) = ( 1
m , . . . , 1

m). If P ∈ P1 then

k∗(P ) = max
u∈U∗

f(u), (5.5)

where

f(u) =

m∑
i=1

κiI(Pi, P
u) + inf

Q∈P
I(P u, Q),

pu =
∑m

i=1 κipi, u = (κ1, . . . , κm) ∈ U∗, and

u∗(P ) = arg max
u∈U∗

f(u). (5.6)

Control u∗(P ) exists since f(u) is a continuous function of κ1, . . . , κm.

For P ∈ P+ we calculate k1(P ) by (5.5) and

k0(P ) =
Πm

i=1ai∑m
i=1Π

m
j=1,j ̸=iai

,

where
ai = inf

Q,R:d(Q,R)≥∆
(I(Pi, Q) + I(Pi, R)), (5.7)

and k∗(P ) = min(k0(P ), k1(P )). If k∗(P ) = k0(P ) then u∗(P ) = (κ01, . . . , κ
0
m), where

κ0i =
Πj ̸=iai∑m

k=1Π
m
j ̸=kai

.

If k∗(P ) = k1(P ) then u∗(P ) is given by (5.6).

If we verify the condition C5 then we can use the general strategy from the previous section.

Theorem 7. Let X = [0, 1], P be such that log p ∈ W r
2 , ||Dr log p||2 ≤ K, r > 1, log p be a peri-

odic function, and µ be Lebesgue measure. Under the conditions C1-C3 and appropriate parameters
S∗ is an α-strategy and

ES∗
P N ≤ | logα|

k∗(P )
+K7| logα|−d +K8

√
| logα| (5.8)

where d = r−1
4r and the constants K7 and K8 are the same for all α.

Proof. The regularity conditions on log p force the density to be strictly positive and finite on
[0, 1]. If we approximate f = log p by

fl = β0 +

l∑
k=1

β2k
√
2 cos(2πkx) +

l∑
k=1

β2k+1

√
2 sin(2πkx) (5.9)
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then
||f − fl||∞ ≤ Kcrl

−(r−1/2), (5.10)

where cr =
√
2r − 1π−r ([20], p. 1365).

Let Al be the set of measures with log p given by (5.9) and Q∗ = Q∗
l be the information

projection ([23]) of Q ∈ P into Al. If we replace in (5.4), (5.5), (5.7) P with Al, then it follows
from (5.10) that

k∗(P )− Iul(P ∗)(P,A(P ) = O(l−(r−1/2)).

If P̂ ∗ is the ML-estimate of coefficients βk, k = 1, . . . 2l+1 in Al, then smoothness of densities
in Al implies

EP (k
∗(P )− (Iul(P̂

∗
L)
(P,A(P )) ≤ O(l−(r−1/2)) +O(

√
l

L
),

where L is the coinciding amount of observations from every population at the first phase. Opti-
mizing in l we verify the condition C5 with c = r−1

2r . Therefore Theorem 4 implies (5.8) .

6. APPENDIX

Consider a family of martingale-differences (z(φ, xn),Fn) with respect to a flow Fn of σ-
algebras, i.e.

E (z(φ, xn)|Fn−1) = 0

for all n = 1, 2, . . . under all φ from an arbitrary set Φ. Here we bound from above supφ∈Φ |zn(φ)|
and supφ∈Φ |zτ (φ)| where zn(φ) =

∑n
k=1 z(φ, xk) is a martingale and τ is a stopping time with

respect to Fn. We assume the following regularity conditions.

B1.
E
(
(z(φ, xn))

2|Fn−1

)
< c.

uniformly over φ ∈ Φ and n = 1, 2, . . .

B2. The function z(φ, x) is differentiable w.r.t. x, X = R, and

D =

∫ +∞

−∞
z1(x) (p(x)q(x))

1/2 dx < ∞, (6.1)

where

z1(x) = sup
φ∈Φ

|∂z(φ, x)
∂x

|,

and the functions p(x) and q(x) are such that the following inequalities

P(xn ≤ x|Fn−1) ≤ p(x), P(xn > x|Fn−1) < p(x)

are valid for all x ∈ X and n = 1, 2, . . .

Theorem 8. If B1 and B2 are satisfied, then the following inequality is valid for any stopping
time τ with bounded mean

E

(
max
m≤τ

sup
φ∈Φ

|zm(φ)|

)
≤ BD

√
E(τ), (6.2)

where D is given by (6.1).

Proof. The following notation is used:

Fm(x) =

m∑
k=1

I(xk ≤ x), F̃m(x) =

m∑
k=1

E (I(xk ≤ x)|Fk−1) , Gm(x) = Fm(x)− F̃m(x).
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Since it is clear that almost surely

lim
x→−∞

F̃m(x) = 0, lim
x→−∞

Fm(x) = 0, lim
x→+∞

F̃m(x) = m, lim
x→+∞

Gm(x) = 0,

we get the following chain of equalities

zm(φ) =

∫
R
z(φ, x)dFm(x) =

∫
R
z(φ, x)dF̃m(x) +

∫
R
z(φ, x)dGm(x) =

∫
R
z(φ, x)dGm(x) = z(φ, x)Gm(x)

∣∣∣∣∞
−∞

−
∫
R

∂z(φ, x)

∂x
Gm(x)dx = −

∫
R

∂z(φ, x)

∂x
Gm(x)dx.

The property ∫
R
z(φ, x)dF̃m(x) = 0

is used here implied by the fact that the process zm(φ) is a martingale. Hence

sup
φ∈Φ

|zm(φ)| ≤
∫
R
sup
φ∈Φ

∣∣∣∣∂z(φ, x)∂x

∣∣∣∣ |Gm(x)|dx. (6.3)

Since obviously Gm(x) is a martingale w.r.t. the flow Fm, the Davis inequality ([24]) implies
that

E

(
max
m≤τ

|Gm(x)|
)

≤ B (p(x)q(x))1/2
√

E(τ), (6.4)

where B is a universal constant.

Inequalities (6.3) and (6.4) entail the statement (6.2).
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