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Abstract—J. Rissanen modified Markov Chains of memory length n by assuming that the
current state of a string is independent of the symbols in its past preceding a context of the
length which is a function of the past itself. He developed a construction algorithm of contexts
stochastic suffix tree for compressing stationary time series and proved its consistency.

Rissanen’s Variable memory Length Markov Chains (VLMC) were formally applied for classi-
fying non-stationary proteins by G. Bejerano and others by training their VLMC models.

In this paper, we apply VLMC training of presumably stationary parts of piece-wise station-
ary time series for testing homogeneity of longer regions and, if homogeneity is rejected, for
identifying most discriminating contexts.

KEYWORDS: Variable memory Length Markov Chain, log-likelihood, approximate likelihood
ratio homogeneity test, mining for most distinguishing contexts.

1. INTRODUCTION AND TESTING ALGORITHMS

Modeling random processes as full n-Markov Chains (MC) can be inadequate for small n, and
over-parameterized for large n, e.g. if the cardinality of the base state space is four, n = 10, then the
number of parameters is 3,145,728. The Box–Jenkins ARIMA approach in quality control, popular
since the sixties, is not adequate in applications to linguistics, genomics and proteomics, security,
etc, where comparatively long non-isotropic contexts are relevant that would require huge memory
size of the full n-Markov Chain (MC).

The popularity of another tool – sparse Variable Memory Length MC (VLMC), has been increas-
ing rapidly since its invention in [14] for compression and – in the 21st century, also for classification
aims in genomics, proteomics, etc.

Sparse VLMC over some alphabet A is a very special case of n-MC, where n is the maximal
length of contexts. With a given string x−n, . . . , x−1, x0 and certain abuse of notation we define

C(x0) = x−1, . . . , x−k, k ≤ n := x−k
−1, (1)

(to a current state x0) is a subsequence of the preceding states x−n
−1 (see (1)) of the minimal length

such that the conditional probability

P (x0|x−m
−1 ) ≡ P (x0|x−k

−1),∀m > k. (2)

For large n, VLMC is sparse, if the total number of contexts |τ | is O(nk) for some fixed k. VLMC
can be viewed as probability suffix tree, see Figure 1.
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Figure 1. Illustrative example of stochastic context tree with distributions of the root given contexts written
under the leaves of the tree

Figure 2. Singular values of daily log-returns

Figure 3. The first three principle components of daily log-returns

We skip description of Rissanen’s ’Context’ algorithm implemented by M. Mächler and P.
Bühlmann in ’Context’ software [4] aimed at estimation of all contexts (see (2)) and corresponding
transition probabilities. We note only that its restriction to a maximal alphabet size ≤ 27 forces
compression of our three-variate data into triples with three-valued components, which can make
them less informative than the corresponding two-variate and univariate counterparts. The author
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of alternative PST algorithm sent us its extension to larger alphabet size, which works much slower.
The proof of consistency of ’Context’ under exponential mixing of stationary data is, e.g., in [16].

Classification of finite VLMC’s describing protein families was considered in [2] via predicted
likelihood and in [1, 5] using rather complicated statistical tests on stochastic suffix trees.

Simultaneously, the elementary nonparametric CCC-test based on Conditional Complexity of
Compression was studied with mathematical theory developed in [12] as justification of its around
100 successful applications to authorship attribution of Literary Texts (LT) outlined in [15]. CCC
can use a wide range of Universal Compressors (UC) [8].

We use an alternative VLMC-based Likelihood Ratio (VLMClr) nonparametric homogeneity
test methodologically similar to the CCC-test. Its mathematical theory is more straightforward
than that of the CCC-test under exponential mixing assumption on stationary data.

The major joint feature of the CCC-test and VLMClr is cutting the query string into slices. For
CCC, slice size is chosen to avoid the UC self-adaptation to the query, which would prevent dis-
crimination unless the slice size is sufficiently small. The main advantage of the likelihood approach
based on the VLMC training is that you can choose larger slices (no adaptation takes places). The
only slicing aim is to include a majority of its contexts and to estimate the variance of the likelihood
increments.

We estimate the VLMC stochastic tree of the large stationary ergodic ‘training’ string T using
the ’Context’ software. This is then concatenated first with query slices Qk and second, with strings
Sk simulated from the training distribution of the same size as Qk, k = 1, . . . ,K (for constructing
simulated strings, see algorithm in [4]).

We then find log-likelihoods LQ(k) of Qk, LS(k) of Sk using the derived probability model of
the training string and the average D̄ of their difference D. Thus the VLMC-approach difference
from the CCC-methodology is in log-likelihood evaluations instead of the encoded increment lengths
evaluation. The latter only approximate log-likelihoods under certain conditions including sufficient
smallness of the slice size.

Next, due to asymptotic normality of log-likelihood increments, we can compute the usual em-
pirical variance V of D̄ and the t-statistic t as the ratio D̄/

√
V with K − 1 degrees of freedom

(df). We find K∗ from the condition that t(K∗) is maximal. Then, the p-value of homogeneity is
evaluated for the t-distribution with K∗ − 1 df.

2. NASDAQ DATA

We use historical Nasdaq data on multivariate daily returns for almost 498 days from April
4th 2011 to Marth 27th 2013 collected from finance.yahoo.com and converted into log-returns.
We reduce the dimensionality of single-day returns via MatLab version of the principal component
analysis (PCA) and compress the data set to the sequence of first (either two or three) Principal
Components (PC) describing a major part of the data variability, see figure 2. We fit their VLMC
stochastic model and apply it for discrimination between statistical properties of different parts of
the data. We also compare our model with GARCH.

2.1. Results for 3 PC

First, the range of each PC is divided into three equal intervals (bins) . Triples of PC-values are
compressed to triples of integers from {1,2,3} according to their belonging to corresponding bins
and their triples are labeled with 26 English letters from A to Z or the * symbol. The sequence of
498 triples is thus converted into a sequence of symbols, of which we display only few:

N N N N N N E N N N N N N K K N N E N N N E K N N K N N K N N N N N N N E N E N N N N E N N

N N N N N N N N N N N N N E E N ....
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Only 8 of all 27 symbols were observed in the whole sequence.

The homogeneity t-test between 1–150 and 301–420 (quiet and volatile regions) trained on 301–
420 cut into 12 slices. The t-value is −2.530118.

Table 1. Variable Length Markov Chain Training Result:

alphabet ’bdejkntw’

number of alphabet 8

number of letters 120

maximal order of Markov chain 2

context tree size 7

number of leaves 5

Table 2. Inter-log-likelihood output

-5.109994 -8.113694 -11.494689 -5.622557
-5.109994 -5.199606 -5.020382 -8.624520
-6.135120 -5.109994 -8.022345 -4.507818
-5.109994 -5.622557 -4.374287

mean m2= -6.21184 variance v2=3.92183

Table 3. Intra-log-likelihood output

-6.224733 -6.135120 -5.622557 -5.622557
-10.284486 -10.012552 -10.144724 -10.347058
-7.736400 -6.498026 -9.982415 -9.603383

mean m1= -8.1845 variance v1=4.15721

2.2. Prediction accuracy

We estimate the Squared Bias to show the accuracy of our prediction by predicting 10 consecutive
letters from the 131st to 140th and for each letter, the prediction is based on training preceding
130 letters. The variance of the log-likelihood of the simulated letters is 0.3947234. The Squared
Bias is 0.04815128 which is 8.1 times less. This illustrates the adequacy of our prediction.

Also, we predict each of 20 letters of the quiet zone by training VLMC on 120 preceding letters.
The coincidence rate of predicted and actual letter is about 75 per cent.

2.3. Results for 2 PC

First, the range of each PC is divided into five equal bins. PC-values are compressed to only 5
integers 1–5 according to their belonging to corresponding bins and their pairs are labeled with 25
English letters from A to Y similarly to 3 PC case. Only 8 of all 25 symbols were observed.

The homogeneity t-test between 1–150 and 301–420 (quiet and volatile regions) trained on 301–
420 gives the t-value −2.842992.

The homogeneity t-test between 1–150 and 240–300 (two relatively quiet regions) trained on
1–150 gives the t-value −1.58671.
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Table 4. Variable Length Markov Chain Training Result:

alphabet ’bcghlmqr’

number of alphabet 8

number of letters 120

maximal order of Markov chain 2

context tree size 12

number of leaves 8

Table 5. Inter-log-likelihood output

-6.223766 -11.781595 -12.728522 -9.787224
-11.865476 -8.975104 -8.161708 -12.361413
-11.060277 -11.919910 -11.287646 -15.384456
-11.030601 -12.187060 -11.395472

mean m2 = −11.07668 variance v2 = 4.59106

Table 6. Intra-log-likelihood output

-13.16789 -11.48149 -13.20084 -14.30159
-13.53945 -11.42373 -10.61972 -13.97436
-13.11824 -12.94475 -12.69096 -15.52045

mean m1= -12.99862 variance v1=1.81131

Table 7. Variable Length Markov Chain Training Result:

alphabet ’bcghlm’

number of alphabet 6

number of letters 150

maximal order of Markov chain 3

context tree size 6

number of leaves 2

Table 8. Inter-log-likelihood output

-9.638182 -9.840707 -9.946484
-11.005356 -12.440440 -12.426464

mean m2 = −10.88294 variance v2 = 1.66718

Table 9. Inter-log-likelihood output

-13.52255 -12.31361 -13.13173 -12.70518
-11.70747 -13.76779 -10.70303 -12.11108
-11.24829 -10.87368 -10.87293 -10.91834
-11.64226 -11.09347 -10.74125

mean m1 = −11.82351 variance v1 = 1.1029

2.4. Prediction accuracy

We estimate the Squared Bias to show the accuracy of our prediction by predicting 10 consecutive
letters from the 141st to 150th (quiet zone) and for each letter, the prediction is based on training
the preceding 140 letters. The variance of the log-likelihood of the simulated letters is 0.06953946.
The Squared Bias is 0.04438316.

Also, we predict each of 10 letters of the quiet zone by training VLMC on 140 preceding letters.
The coincidence rate of predicted and actual letter was about 55 per cent. It is less than for the 3
PCs case partly because we must predict triples of bins rather than pairs of bins.
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2.5. Follow up analysis

One of the major additional advantages of VLMClr over CCC is its more straightforward use for
the follow up estimation of contexts contributing the most to the discrimination between regions
that were previously shown to be distinct.

For this aim, we propose cutting both the training and query strings into several slices for esti-
mating the mean frequencies and their empirical variances by their direct count which approximates
steady state probabilities and variances of contexts.

We obtain more transparent results of this follow up analysis than those obtained with LZ-78
in [9].

Taking into account the fact that the normalized frequency of occurrences of a context (with its
frequency more than some threshold) of size n is Asymptotically Normal (AN) with variance σ2

i ,
σi can be estimated via these frequencies in slices; i = 0 for training string and one for query. The
normalized difference between frequencies for 0 and 1 cases is then AN with variance as sum of the
above variances.

For every VLMC context of the whole Training, one can evaluate its multiplicities in k(Tr)
Training and k(Qu) Query slices of the SAME LENGTH, their corresponding empirical means
m(Tr), m(Qu), and empirical variances V (Tr), V (Qu). The usual t-statistics are

T (k) = (m(Tr)−m(Qu))/
√

(V (Tr)/k(Tr) + V (Qu)/k(Qu)) (3)

Choose k(Tr) and k(Qu) from the condition that t(k∗(Tr), k∗(Qu)) is maximal and slice sizes are
equal. The slice size must be several (say, not less than 5) sizes of the context considered We then
order t∗ for different contexts starting from their maximal absolute values.

We exclude the contexts with frequencies less than a threshold in our first applications, in spite
of the possibility of losing some unstable but potentially significant information contained in rare
contexts.

Thus, one can find p-values for their equality and order these p-values starting with the minimal
ones.

In the 2-PC case, the quiet region has the pattern L (indicating that the first PC-value is located
in the second bin and the second PC-value is located in the third bin) and H (indicating that the
first PC-value is located in the third bin and the second PC-value is located in the second bin)
while the volatile region have the pattern B (indicating that the first PC-value is located in the
first bin and the second PC-value is located in the second bin) and Q (indicating that the first
PC-value is located in the fourth bin while the second PC-value is located in the second bin).

In the 3-PC case, the quiet region has the pattern N (indicating that all three PC-values are
located in the second bin) while the volatile region has the pattern E (indicating that the first
PC-value is located in the first bin while the second and third PC-values are located in the second
bin).

2.6. Comparison with GARCH

In this subsection, we will make a comparison between our VLMC method and the GARCH
model ([19], [20]) applied to two different sets of financial data.

The first data set we use is the daily log-return data of APPLE Inc. starting from Jan. 2nd,
2009 (Figure 4). By observation, we pick the volatile region (the first 450 days returns )and the
quiet region (the 500th to 600th days returns) to make a comparison. We first fit the data with the
GARCH(1,1) modeled using the MATLAB(R2011a) GARCH toolbox.
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Figure 4. Apple Daily Returns

yt = C + ϵt (4)

ϵt = σtzt (5)

σ2
t = κ+G1σ

2
t−1 +A1ϵ

2
t−1 (6)

Let α̂1 and β̂1 be the estimator for GARCH(1) and ARCH(1) in the first model. Similar notation
can be defined for α̂2 and β̂2. From the results, we have z1 = α̂1−α̂2√

σ2
α1

+σ2
α2

.
= 2.1554, and z2 =

β̂1−β̂2√
σ2
β1

+σ2
β2

.
= −1.6971. The p-values obtained are p1 = 0.0311 and p2 = 0.0897.

We apply the same data on VLMC. The homogeneity t-test between 1–450 and 500–600 (quiet
and volatile regions) trained on 1–450 shows that the t-value is −16.02058. Thus, the p-value
p < 0.00001. This p-value by VLMC is much smaller than the Z-score by GARCH.

We also use the first principal component of Nasdaq daily log-return data for comparison with
GARCH. Again, let α̂1 and β̂1 be the estimator for GARCH(1) and ARCH(1) in the first model.
Similar notation can be defined for α̂2 and β̂2. From the results, we have z1 =

α̂1−α̂2√
σ2
α1

+σ2
α2

.
= −1.1798,

and z2 =
β̂1−β̂2√
σ2
β1

+σ2
β2

.
= 2.1554. And thus, the p-values are p1 = 0.2381 and p2 = 0.0311.

We divide the range of the first PC of Nasdaq daily log-returns into 27 bins. Each bin is labeled
with 26 English letters from A to Z and symbol *. The sequence of the first PC of daily log-returns
is converted into a sequence of symbols. The homogeneity t-test between 1–150 and 301–420 (quiet
and volatile regions) trained on 301–420 shows that the t-value is −7.048379. Thus, the p-value is
p < 0.000001. This p-value by VLMC is much smaller than the p-value by GARCH.
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3. MADISON VS HAMILTON DISCRIMINATION OF STYLES

The Federalist Papers written by Alexander Hamilton, John Jay and James Madison appeared
in newspapers in October 1787–August 1788. Their intent was to persuade the citizens of the State
of New York to ratify the U.S. Constitution. Seventy seven essays first appeared in several different
newspapers all based in New York and then eight additional articles written by Hamilton on the
same subject were published in booklet form. Ever since that time, the consensus has been that
John Jay was the sole author of five ( No. 2–5, No. 64) out of a total 85 papers, that Hamilton was
the sole author of 51 papers (Hf), that Madison was the sole author of 14 papers (Mf, No. 10,14,37–
48) and that Madison and Hamilton collaborated on another three (No. 18–20). The authorship
of the remaining 12 papers (Df, No. 49–58, 62,63) has been in dispute; these papers are usually
referred to as the disputed papers. It has been generally agreed that the Df-papers were written
by either Madison or Hamilton, without consensus on particulars. On the other hand, [13, 7, 17]
and other stylometry attributors have given all Dfs to Madison. Our goal has been to answer the
following 2 questions:

1. Does VLMC-methodology attribute all Mf to Madison and reject significantly the identifica-
tion of the Hf style with that of Mf?

2. What contexts are most statistically different between Mf and Hf?

The answer we have is ’yes’ obtained for the first question: Mf is attributed to Madison, Hf and
Mf identity of styles is rejected.

2. Our goal is to find patterns that occur in one body significantly more often than in the other.
The patterns (VLMC contexts) we will examine are those that arise during the training process
using the VLMC algorithm.

To generate meaningful statistics, we divide each file into slices of a given size, and run the
‘Context’ program to find the log-likelihood of each slice. We then apply the t-test to find out
whether the styles of articles written by the two authors are significantly different. For each pattern,
we calculate the mean number of occurrence for each file. Finally, we perform the t-value for each
pattern (VLMC context).

Here is a detailed description of the algorithm:

1. For each of the two files Madison (M), Hamilton (H):
(a) Train the VLMC model on Madison’s text.
(b) Cut both the M and H texts into slices of equal given size.
(c) For each slice:

i. Using Madison VLMC probability context tree to calculate the log-likelihood of each slice.
ii. Calculate the mean value, variance of slices of M and H respectively.
iii. Calculate the t-value as |L1−L2|√

v1/n1+v2/n2
. where L1 and L2 are mean values of log-likelihood

of slices of M and H, v1 and v2 are variances over slices of M and H, n1 and n2 are the
numbers of slices of M and H respectively.

(d) For each pattern (VLMC context):
i. Calculate the empirical mean occurrence.
ii. Calculate the empirical variance of occurrence.
iii. Calculate the t-value as |m1−m2|√

v1/n1+v2/n2
, where m1 and m2 are mean values of number of

occurrence of one pattern in each slice of M and H respectively, v1 and v2 are variances of
occurrence of M and H. n1 and n2 are the numbers of slices of M and H respectively,

Here is a detailed description of the data input and output:

We first combine all 14 Madison’s article into one file and use it as the training data. The
maximal memory n is set to be 15. (Thus at most 15 letters predict the next letter)
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Table 10. Data from Madison
fileproc10.txt fileproc14.txt fileproc37.txt fileproc38.txt
fileproc39.txt fileproc40.txt fileproc41.txt fileproc42.txt
fileproc43.txt fileproc44.txt fileproc45.txt fileproc46.txt
fileproc47.txt fileproc48.txt

Table 11. Data from Hamilton
fileproc1.txt fileproc6.txt fileproc7.txt fileproc8.txt
fileproc9.txt fileproc11.txt fileproc12.txt fileproc13.txt
fileproc15.txt fileproc16.txt fileproc17.txt fileproc31.txt
fileproc32.txt fileproc34.txt

Table 12. Variable Length Markov Chain Training Results:

alphabet ’*abcdefghijklmno
pqrstuvwxyz’

number of alphabet 27

number of letters 228744

maximal order of Markov chain 13

context tree size 3365

number of leaves 2353

Second, the total number of letters from Madison’s article is 228744. We cut the whole Madison
data into 9 slices and each slice contains 25416 letters.

Third, we perform an intra VLMC t-test. We use each slice of Madison’s data as a query string
and use the remaining 8 slices as a training string. We want to compute the log-likelihood of each
query string.

Table 13. Inter-log-likelihood output

-27863.56 -28047.04 -27236.75 -26559.74
-24995.70 -27173.49 -26209.20 -25182.81
-25622.52

mean value m2 = −26543.42 variance v2 = 1261004

Fourth, we import the data from Hamilton. The total number of letters of Hamilton’s article is
152496. We cut the letters into 6 slices so that each slice contain 25416 letters (25416x6=152496)

Last, we perform an inter-VLMC t-test. We use the total training result of Madison to predict
the log-likelihood of each slice of Hamilton.

Table 14. Intra-log-likelihood output

-28552.20 -28462.64 -28511.57 -28234.03
-27227.31 -26510.97

mean value m1 = −27916.45 variance v1 = 721562.6

We use the following formula for the t-test:

t =
l1 − l2√

var1/n1 + var2/n2
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plug in the numbers and we get the t-value 2.690809.

Finally, we have done a comparison ”between Mf and itself (we are supposed to get a t-value
around 0).

The inter VLMC of Madison vs Madison log-likelihood result:

Table 15. Inter-log-likelihood output

-27725.26 -27341.10 -26948.34 -26352.83
-23933.95 -26703.40 -25770.18 -24609.77
-25525.76

mean m2 = 26101.18 variance v2 = 1585075

The result of Inter- and Intra- VLMC t-test of Madison: the t-value is −0.7864356.

Cutting Madison’s text into 14 slices and performing a t-test between Madison’s and Hamilton’s
data by the method described above, we get the t-score 3.099237

Cutting the Madison’s text into 20 slices and performing a t-test between Madison’s and Hamil-
ton’s data by the method shown above, we get the t-score 4.016742

Frequencies of VLMC contexts

We have calculated frequencies of each VLMC context over slices and found patterns with the
most significantly different frequencies between Madison’s and Hamilton’s articles. This mining if
interesting for linguists can be of help to convince them in the usefulness of the statistical LT
processing.

The majority of differentially expressed patterns found in [9] using LZ-78 are also found further
on our larger list.

1 The following are patterns that Madison used significantly more frequently than Hamilton
(we cut Madison’s data into 14 slices, symbol * denotes space):

For p-value < 0.005

nt* , rs* , fore* , han* , de* , ed*b , by , by* , by*t , f* , nd*be , orm , *on*th , *th , *on*t ,
ese* , i* , over* , ay*be , und* , d* , he*n , g*the* , if* , der* , he* , ple* , ay*b , he*for , he*or ,
both , c* , re* , *ele , bot , ix , lt* , sume , ho* , ke* , *el , y*the* , latt , latte , oin* , *bo , *ne ,
by*o , veral* , *han , seco , *lat , d*th , in* , tas , ore* , eside , mer* , is* , ewe , rs*a , *se , tes* ,
ns* , at*th , lf* , d*on , ver*

For 0.005 ≤ p-value < 0.01

ca* , ose* , lst , *de , vera , *we , e* , nve , *cri , ere* , dur , sever , he*se , pe* , at*t , tuti ,
e*g , nsti , titu , w*f , nta , he*f , *tit , nin , sing , tit , ution* , rif

2 The following are patterns that Hamilton used significantly more frequently than Madison:

For p-value < 0.005
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upo , pon , *k , *up , duc , ne , uis , ance , *le , om , om* , nati , wou , ne* , *at , *at* , ct ,
*wo , nation , id , way , *nat , ould* , e*ar , ontr , ity* , *ther , tim , qu , there , there* , *to ,
*to* , ut , ract , ign , e*to* , ndu , ont , ies , lit , eso , *if , erac , eng , it , it* , thin , wea , oul ,
dic , es*of* , *this* , ld , ld* , ilit , kind , *us , *us* , va

For 0.005 ≤ p-value < 0.01

he*i , ten , arc , rri , y*t , lig , ig , s , s* , ation , sit , *lan , comm , ld*b , time , uisi , ces , iv

We also did this analysis by cutting into 9 and 20 slices. The results are available by request.

4. HELIUM EMISSIONS AND SEISMIC EVENTS

Complex processes in the Earth’s crust preceding strong earthquakes imply changes of concentra-
tions of certain chemicals dissolved in ground water samples from deep wells. Of particular interest
in the region of Armenia studied in [10] are the Helium emissions into the water samples from
deep wells (unlike studies in [11] of near–surface emissions) that appear attractive as a potential
earthquake predictor.

We consider an approximately 10-year–long set of Helium emissions data during the nineteen
eighties and nineties from three deep Armenian wells in Kadaran, Ararat and Surenavan and the
earthquake dates in their vicinity shown in our figure 4 were sent to us by Dr. E.A. Haroutunian
(Inst. for Informatics and Automat. Problems, Armenian Acad. Sci.) for our robust analysis. In [10]
they showed separately for each well that the Wilcoxon statistical test distinguishes between quiet
region of the plot and that preceding strong earthquakes. The Wilcoxon test was derived under
assumption of samples independence, which does not hold in this application. Our problem was
to check if VLMClr can distinguish between the regions given above. Instead of separate studies
of data from the three wells we used PCA–compressed data. After the observations started, the
earthquake days were 529, 925, 1437, 1797, 1997, 2470, 2629 and 2854. The singular value plot
(figure 6) suggests using either one or 2 PCs.

Figure 5. Helium emissions data from three deep Armenian wells

In the one–PC case, the range is divided into 27 equal bins. PC-values are labeled with 26 En-
glish letters from A to Z and symbol * according to their belonging to bins. The ‘Context’ gave us
the following parameters of the stochastic context tree:
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Figure 6. Singular Values

Figure 7. Top two principle components

Table 16. Variable Length Markov Chain Training Result:

alphabet ’abfghlmnqrstw’

number of alphabet 17

number of letters 400

maximal order of Markov chain 3

context tree size 28

number of leaves 21

The quiet region 1–400 has the letters ”hijklmnopqr while the volatile region before and af-
ter earthquake 429–568 has the letters ”opqrstuvwxy”. It is impossible to train either region to
predict the other one. It is also not necessary to do that because one can easily distinguish be-
tween different regions by observing that the quiet region has the first PC value up above a level
”n”(corresponding to a value -1815.101), and the volatile region has the first PC value down below
a level ”s”(corresponding to a number -2174.363).

In the 2–PCs case, the range of each PC is divided into 5 equal bins. PC-values are compressed
to 5 integers according to their belonging to bins and their pairs are labeled with 25 English letters
from A to Y. We just list the first few letters as an example of labeled letters:

r r r r r r r r r r r r r r r r r r m m m m q q q q q q q r q q q q q r q q r r m m r m r r r q q q q q q q q r r r r r r

r r g g g...

Training the quiet region between 1–400 will provide the following training result:

The homogeneity t-value between 1–400 (quiet region) and 429–528 (before earthquake) is 4.4
which means that these two region are quite different. By calculating t-value for each context, we
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Table 17. Variable Length Markov Chain Training Result:

alphabet ’abfghlmnqrstw’

number of alphabet 13

number of letters 400

maximal order of Markov chain 3

context tree size 22

number of leaves 15

get the context that distinguishes the most between these two regions. ”l”(the first PC value in
the third bin and the second PC value in the second bin) is the typical pattern of volatile regions
before earthquake and ”b”(the first PC value is in the first quartile and the second PC value is in
the second quartile) is the typical pattern of quiet region.

The homogeneity t-test between 1–400 (quiet region and 529–568 (after earthquake) is 0.8, which
means that we find not much difference between the quiet region and the region after earthquake.
In addition, we find an interesting letter ”c”( it means that the first PC is located in the first bin
and the second PC is in the third bin) which can be an indicator for quiet times to follow because,
when each ”c”appears, there were at least 100 quiet days beyond it in the future.

5. DISCUSSION AND CONCLUSIONS

Our results show that the VLMC modeling can be useful in various prediction and inference
problems of certain time series.

Our next goal will be to use versions of the ‘Context’ program including the PST for enabling
processing larger alphabet faster using parallel computing and running on line versions of stochastic
context tree construction for the fast on line detection of abrupt changes in data statistical profiles
and for processing musical scores.
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