———— АНАЛИЗ И СИНТЕЗ СИСТЕМ УПРАВЛЕНИЯ **=**

Типы ошибок в инерциальных навигационных системах¹ и методы их аппроксимации

М.А. Литвин^{*}, А.А. Малюгина^{*}, А.Б. Миллер^{**}, А.Н. Степанов^{*}, Д.Е. Чикрин^{*}

*Высшая школа Информационных технологий и информационных систем, Казанский федеральный университет, Казань, Россия **Институт проблем передачи информации им. А. А. Харкевича РАН Поступила в редколлегию 20.11.2014

Аннотация—В работе произведено определение параметров ошибок инерциальных датчиков инерциальных измерительных систем двумя методами – при помощи спектральной плотности мощности и дисперсии Аллана. Описаны основные источники шумовых составляющих, их свойства и природа.

КЛЮЧЕВЫЕ СЛОВА: инерциальные навигационные системы, погрешности измерений, спектральная плотность мощности, дисперсия Аллана, микроэлектромеханические датчики, шумы и помехи.

1. ВВЕДЕНИЕ

Обеспечение стабильного и точного определения координатно-временного поля как человека, так и робототехнических платформ является одним из ключевых факторов обеспечения управляемости и эффективности выполнения как специальных, так и спасательных операций различного масштаба.

Единственным на сегодняшний день способом обеспечения навигации на произвольных типах местности, а также внутри помещений и замкнутых пространств (в условиях недоступности группировок глобальных навигационных спутниковых систем – ГНСС), является построение комбинированных информационно-управляющих навигационных систем на базе высокоточных приемников спутниковой навигации и совокупности инерциальных датчиков.

Построение на современной элементной базе изделий подобного типа позволяет обеспечивать надежное определение местоположения участников спасательных операций в большинстве типов условий и при различных типах движений, в том числе при полной недоступности спутниковых навигационных сигналов в заданной точке местности (до нескольких десятков минут). Вместе с тем, надежное комплексирование показаний разнородных датчиков для обеспечения достаточных тактикотехнических характеристик, массогабаритных параметров и адекватной стоимости

¹ Здесь и далее ИНС

аппаратуры является сложной научно-технической задачей, не решенной на достаточном уровне в мировой практике.

Одной из основных проблем датчиков инерциальных навигационных систем, длительное время работающих в автономном режиме, является отсутствие возможности описания ошибок показаний таких датчиков с помощью стандартных статистических моделей.

В данной статье описаны источники шумовых составляющих показаний микроэлектромеханических (MEMS) датчиков [1] (акселерометров и гироскопов) инерциальных навигационных систем и способы их оценки. Данные методы полезны для моделирования систем подобного рода, оценки производительности реальных датчиков и разработки фильтров Калмана.

В статье представлены описания опибок, обзоры способов их оценки с использованием методов Allan Variance (дисперсия Аллана) и PSD (Power Spectral Density – спектральная плотность мощности), а также результаты исследования количественных характеристик шумовых составляющих для реальной инерциальной навигационной системы Analog Devices ADIS16448.

2. ТИПЫ ШУМОВЫХ ВОЗДЕЙСТВИЙ, ВЛИЯЮЩИХ НА ВЫХОДНОЙ СИГНАЛ ДАТЧИКА

Для использования данных, получаемых с датчиков навигационной системы, необходимо корректно выделить из выходного сигнала датчика информационную составляющую. Сделать это может быть проблематично, т.к. сигнал в значительной мере зашумлен различными типами шумовых составляющих.

Показания y(t) датчиков можно представить в виде комбинации функций:

$$y(t) = u(t) + e(t) + b(T) + N(a, \omega, T, t)$$
(1)

Где t – время, T – температура, a/ω – реальные кинематические величины, которые измеряет датчик, y(t) – выходные данные датчика, u(t) – информационная составляющая сигнала, b(T) – уход показаний, вызванный изменением температуры окружающей среды, $N(a, \omega, T, t)$ – ошибки, вызванные условиями среды.

Посредством методов аппроксимации можно оценить только шумовую компоненту, зависящую от времени – e(t). Отклонение b(T) обычно постоянно.

Описанные ниже шумовые составляющие приведены для гироскопов, отличия для акселерометров лишь в терминах и обусловлены они размерностью величины, измеряемой датчиком.

2.1. Шум квантования (Quantization Noise)

Появление данного типа шума обусловлено дискретной природой датчика. Частота дискретизации АЦП и разрешающая способность датчика² конечна, поэтому

 $^{^2\,}$ Минимальное значение измеряемой величины, которо
е датчик может корректно интерпретировать

328 ЛИТВИН, МАЛЮГИНА, МИЛЛЕР, СТЕПАНОВ, ЧИКРИН

результаты, возвращаемые датчиком несколько отличаются от исходных аналоговых данных. В зависимости от типа аналого-цифрового преобразования шум может возникать из-за округления (до определённого разряда) сигнала или усечения (отбрасывания младших разрядов) сигнала. Шум квантования обладает малым временем корреляции, или, что эквивалентно, широкой полосой пропускания и легко может быть отфильтрован полосовым фильтром. Ошибка данного типа не накапливается с течением времени. Ошибки, связанные с эффектами квантования, более подробно описаны в литературе (см. [2], [3])

2.2. Случайное блуждание (дрейф) угла (Angle Random Walk)

Дрейф угла – основная шумовая компонента в выходных данных MEMS-датчиков (см. например, [3], [4], [5]). Представляет собой компоненту аддитивного белого шума, проявляется в отклонении значений от ожидаемых случайным образом; влияет на результат интегрирования (для преобразования измеряемой датчиком угловой скорости в угол поворота): в случае, если датчик стационарен, ожидается, что результат интегрирования будет равен нулю, но под воздействием белого шума показания датчика колеблются случайным образом; при этом среднее отклонение растет с ростом времени.

Примером случайного блуждания является дрейф угла гироскопических датчиков (датчиков угловых скоростей). Для указанного типа датчиков значение дрейфа угла измеряется в °/ $\sqrt{ч}$ и характеризует точность датчика, которая ограничивается уровнем белого шума в выходном сигнале угловой скорости гироскопа. С ростом показателя дрейфа угла, увеличиваются отклонения в значениях углов и угловых скоростей. Дрейф угла в 0.003 °/ $\sqrt{ч}$ показывает, что спустя 6 минут ошибка угла составляет 0.001 °, а спустя 1 минуту – 0.0004 ° (все рассматриваемые значения лежат в интервале σ).

2.3. Фликкер-шум (Нестабильность смещения нуля) (Bias Instability)

Шум, возникающий в электронных компонентах датчика, подверженных случайному т.н. "мерцанию" ("flickering"). Имеет спектральную мощность, пропорциональную f^{-1} (розовый шум). Оказывает значительное влияние на низких частотах, с увеличением частоты интенсивность падает: график мощности шума в логарифмическом масштабе равномерно убывает; на высоких частотах перекрывается белым шумом. Наблюдается во многих электронных приборах. Подробнее о фликкер-шуме и методах его компенсации можно прочитать в статье [6].

2.4. Случайное блуждание (дрейф) скорости (Rate Random Walk)

Данный вид шума представляет собой случайное блуждание реально измеряемых датчиком физических величин ([3], [5]), таких как ускорение, угловая скорость. Ошибка детерминированная, на больших промежутках времени (несколько часов) наблюдается медленное монотонное отклонение значений. Шум неизвестной природы с очень большим временем корреляции. Чтобы оценить его любым из методов аппроксимации, необходимо снять с датчиков значительное количество данных, но при этом на больших промежутках времени данные с датчика подвержены влияниям условий среды (в частности, наиболее существенное влияние оказывает изменение температуры в ходе эксперимента) и этот шум может теряться на фоне воздействий нестабильности среды.

2.5. Мультипликативная систематическая погрешность (Rate Ramp)

Мультипликативная систематическая погрешность представляет собой детерминированное отклонение показаний датчика на значительных промежутках времени ([3], [5]). В подавляющем большинстве случаев такой шум обусловлен условиями среды, такими, как стабильность температуры, стабильность источника питания, стационарность датчика; при соблюдении требований к условиям эксперименталанный тип шума не должен проявляться в тестах.

2.6. Синусоидальный шум

Синусоидальный шум ([3], [5]) – шум, порождаемый вибрациями в компонентах датчика. Принцип работы любых MEMS-датчиков основан на измерении вибрации/вращений компонентов устройства, особенно гироскопов, которые получают данные на основе измерения *кориолисовой силы*. Этим обусловлено зашумление выходного сигнала датчика псевдодетерменированной синусоидальной компонентой, непосредственно связанной с резонансной частотой его компонентов. При частоте шума, близкой к частоте сэмплирования датчика, практически незаметен на графике отклонения Аллана, т.к. он теряется на фоне белого шума (дрейфа угла) датчика.

3. МЕТОДЫ ОЦЕНКИ ШУМОВЫХ СОСТАВЛЯЮЩИХ СИГНАЛА

Стандартными методами *статистического анализа*, например, нахождением среднего или дисперсии, невозможно получить никакую оценку вышеупомянутых шумовых компонент, т.е. данные методы в данном случае совершенно бесполезны. Методами *анализа частотных интервалов*, такими, как *автокорреляционная функция* или *спектральная плотность мощности* сигнала, можно выявить присутствие той или иной шумовой компоненты в сигнале, но конкретные значения ошибок получить невозможно.

Для оценки шумовых составляющих датчиков на сегодняшний день принято использовать два метода оценки шумовых составляющих — метод спектральной плотности мощности и метод дисперсии Аллана, представляющий собой модифицированный метод дисперсионного анализа ANOVA (Analysis of variance)([3], [7], [8]).

3.1. Спектральная плотность мощности (PSD, Power Spectral Density)

Функция, описывающее распределение мощности сигнала в зависимости от частоты, то есть мощность, приходящаяся на единичный интервал частоты. Имеет

330 ЛИТВИН, МАЛЮГИНА, МИЛЛЕР, СТЕПАНОВ, ЧИКРИН

размерность мощности, делённой на частоту, то есть энергии (интенсивности) сигнала.

Оценка СПМ может выполняться методом преобразования Фурье, предполагающего получение спектра в области частот посредством быстрого преобразования Фурье автокорреляционной функции сигнала. До изобретения алгоритмов БПФ³ этот метод из-за трудоёмкости прямого вычисления дискретного преобразования Фурье практически не использовался.

Рис. 1. Типичный график СПМ

3.2. Дисперсия Аллана (Allan Variance)

В основе данного аппарата лежит метод анализа временных окон. Поток данных разбивается на временные окна фиксированной продолжительности τ , если в конце последовательности остаются данные, для которых промежуток, на котором они были сняты, меньше, чем τ , то они отбрасываются. Разбиение производится для нескольких различных τ , дисперсия Аллана представляется как функция от длины временного промежутка (времени корреляции). Выбор длин временных окон в целом произволен, но рекомендуется придерживаться следующих ограничений:

- Длина временного окна должна быть кратна периоду выборки⁴.
- В [1], [8] в качестве длин временных окон рекомендуется брать следующие значения: $\tau_0, 2\tau_0, 3\tau_0, ..., k\tau_0$, где τ_0 период выборки, k –целое число (k < N/2), N длина по времени всей исследуемой последовательности данных (длина временного окна не может быть больше, чем половина длины всей последовательности; это необходимо для обеспечения репрезентативности временных окон).

³ Быстрое преобразование Фурье

⁴ Величина, обратная частоте выборки датчика; время, за которое датчик возвращает одну посылку данных

ТИПЫ ОШИБОК В ИНС И МЕТОДЫ ИХ АППРОКСИМАЦИИ

331

Построив график зависимости *корня* из дисперсии Аллана (отклонения Аллана, **AD** (Allan Deviation)) от длины интервала усреднения в логарифмическом масштабе, получим график, похожий на изображенный на рис. 2. Из него можно легко выделить различные источники ошибок в выходных данных просто проанализировав коэффициенты угла наклона графика на различных участках. Как видно из подписей на рисунке, каждому типу шума однозначно соответствует определенный участок на графике (т.е. участок с определенным коэффициентом угла наклона).

Рис. 2. График отклонения Аллана

Алгоритм вычисления функции дисперсии Аллана(см. [8])

Для каждого τ :

- 1. Определяем количество *M* сэмплов данных во временном окне. $M = \tau / f_0$.
- 2. Из выборки длиной в N сэмплов формируем K = N/M временных окон.
- 3. Находим среднее для каждого из К окон:

$$\overline{\omega}_k = \frac{1}{M} \sum_{i=1}^M \omega_{M(k-1)+i}$$
; $k = 1, ..K; \omega_j - j$ -тый сэмпл данных

4. Находим дисперсию Аллана для данного размера окна:

$$\sigma_a^2(\tau_M) \equiv \frac{1}{2} \langle (\overline{\omega}_{k+1}(M) - \overline{\omega}_k(M))^2 \rangle \approx \frac{1}{2(K-1)} \sum_{i=1}^{K-1} (\overline{\omega}_{k+1}(M) - \overline{\omega}_k(M))^2$$

Здесь $\langle \rangle$ – усреднение по ансамблю, $\tau_m = M \cdot (1/f_0)$ – длина временного окна в секундах, время корреляции.

Точность оценки отклонения Аллана возрастает с увеличением количества окон; в интервале 1σ точность вычисления для K временных окон представлена следующей формулой:

$$\%_{\rm om} = \frac{100}{\sqrt{2(K-1)}}$$

5. Находим дисперсию Аллана. Переводим его из °/сек в принято
е $^{\circ}/ч$:

$$\sigma(\tau) = \sqrt{\sigma^2(\tau)}$$
; $\sigma(\tau)^{\circ}/\mathbf{y} = \sigma(\tau) \cdot 3600^{\circ}/\text{cek}$

3.3. Связь между спектральной плотностью мощности сигнала и дисперсией Аллана

Между дисперсией Аллана и спектральной плотностью мощности существует взаимосвязь, представленная следующим выражением:

$$\sigma^2(\tau) = 4 \int_0^{+\infty} S_{\Omega}(f) \frac{\sin^4 \pi f \tau}{(\pi f \tau)^2} df.$$
 (2)

3.4. Оценка параметров шумовых компонент различными методами

В таблице ??tabular:errors представлены уравнения участков графиков СПМ и *дисперсии* Аллана, соответствующие различным типам ошибок. Здесь Q, N, B, K, R – коэффициенты соответствующих ошибок, Ci – интегральный косинус, Ω_0 – амплитуда синусоидального шума, $\delta(x)$ – дельта-функция.

4. ОЦЕНКА ШУМОВЫХ СОСТАВЛЯЮЩИХ ВЫХОДНОГО СИГНАЛА ADIS16448

Для оценки шумовых характеристик устройства Analog Devices ADIS16448 были сняты серии данных с датчика длиной в 2-3 часа. В результате, итоговые значения параметров, приведенные в этом отчете, были получены на основе выборки продолжительностью около 3-х часов, содержащей ~7 млн. отсчетов. Реализация алгоритмов производилась на языке программирования MATLAB. Произведены следующие эксперименты:

- 1. Построение графика отклонения Аллана с τ вида $\tau_0, 2\tau_0, 3\tau_0, ...k\tau_0$. Данный подход обладает высокой точностью, но отображает все осцилляции, на фоне которых теряются шумы, проявляющиеся на больших промежутках времени.
- 2. Построение графика отклонения Аллана с τ вида $\tau_0, 2\tau_0, 2^2\tau_0, ...2^k\tau_0$. Основной способ построения графика отклонения. Т.к. количество τ небольшое, анализ выборки алгоритмом производится достаточно быстро; осцилляции не видны на графике.
- 3. Построение функции СПМ с использованием метода Уэлча.
- 4. Преобразование СПМ в дисперсию Аллана по формуле 2 для проверки корректности выкладок.
- 5. Выделение участков графика AD с коэффициентами угла наклона, соответствующими различным типам ошибок. (см. п. 3.4)
- 6. Нахождение значений коэффициентов ошибок по полученным значениям функции отклонения Аллана на соответствующих участках графика.

Таблица 1. Участки графиков СПМ и дисперсии Алл	ана, соответствующие различным типам
ошибок	

Тип ошибки	$\mathbf{C\Pi M}(S_{\Omega})$	Отклонение Аллана $(\sigma^2(au))$
Шум квантования	$\left(2\pi f\right)^2 Q^2 T_s$	$\frac{3Q^2}{\tau^2}$
Дрейф угла	N^2	$\frac{N^2}{ au}$
Нестабильность смещения нуля	$\frac{B^2}{2\pi} \cdot \frac{1}{f}$ $f \le f_0$	$\frac{2B^2}{\pi} \Big[\ln 2 - \frac{\sin^3 x}{2x^2} (\sin x + 4x \cos x) + Ci(2x) - Ci(4x) \Big],$ $x = \pi f_0 \tau$
Дрейф угловой скорости	$\left(\frac{K}{2\pi}\right)^2 \cdot \frac{1}{f^2}$	$\frac{K^2\tau}{3}$
Мультипликативная погрешность	$\frac{R^2}{(2\pi f)^3}$	$\frac{R^2\tau^2}{2}$
Синусоидальный шум	$\frac{\Omega_0^2}{2} \Big[\delta(f - f_0) + \delta(f + f_0) \Big]$	$\Omega_0^2 \Big(\frac{\sin^2 \pi f_0 \tau}{\pi f_0 \tau} \Big)$

4.1. Построение графика отклонения Аллана с высокой точностью

Рис. 3. График отклонения Аллана для всех осей гироскопа ADIS16448 с малым линейным приращением τ

Рис. 4. График отклонения Аллана для всех осей акселерометра ADIS16448 с малым линейным приращением τ

Рис.5. Графики спектральной плотности мощности для различных осей ADIS16448:a) Гироскопы; б) Акселерометры.

4.2. Проверка корректности работы алгоритмов

Для проверки была произведена конвертация последовательности СПМ, построенной из автокорреляционной функции сигнала, в последовательность Дисперсии Аллана по формуле 2. Отклонение Аллана, полученное непосредственно при помощи алгоритма из п. 3.2, было построено на одном графике с корнем из результата конвертации.

Рис. 6. Отклонение Аллана, полученное при помощи алгоритма из 3.2

Аппроксимация графиков соответствующим полиномом

Так как источники ошибок в выходном сигнале датчика статистически независимы, общую ошибочную компоненту сигнала как для дисперсии Аллана, так и СПМ можно представить в виде композиции всех шумовых составляющих, т.е. их суммы:

$$\sigma^{2}(\tau) = R^{2} \frac{\tau^{2}}{2} + K^{2} \frac{\tau}{3} + B^{2} \frac{2}{\pi} \ln 2 + N^{2} \frac{1}{\tau} + Q^{2} \frac{3}{\tau^{2}}$$
(3)

$$S(f) = (2\pi f)^2 \tau_0 Q^2 + N^2 + (\frac{B}{2\pi})^2 \frac{1}{f} + (\frac{K}{2\pi}) \frac{1}{f^2} + \frac{R^2}{(2\pi f)^3}$$
(4)

Аппроксимация производится нелинейным методом наименьших квадратов так, чтобы график функции с полученными коэффициентами был наиболее близок к графику экспериментальных данных.

Данный метод позволяет получить количественную оценку шумовых составляющих в автоматическом режиме и с достаточно высокой точностью (большей, чем при визуальном анализе графиков).

4.3. Выделение участков графика

Рис. 7. График отклонения Аллана с выделенными участками

4.4. Нахождение коэффициентов ошибок

Тип ошибки	Единица измерения	Ось Х	Ось Ү	Ось Z
Шум квантования	0	0.0037	0.0025	0.0020
Дрейф угла	$^{\circ}/\sqrt{\mathrm{T}}$	0.6791	0.6725	0.5782
Нестабильность смещения нуля	°/ч	23.7522	25.5331	18.9388
Дрейф угловой скорости	$\frac{^{\circ}/\text{cek}}{\sqrt{\text{q}}}$	0.0312	0.0438	0.0223
Мультипликативная погрешность	<u>°/сек</u> ч	_	_	_

Таблица 2. Значения	і коэффициентов	ошибок для ги	роскопа ADIS16448
1	1 1 1	/ 1	1

Тип ошибки	Единица измерения	Ось Х	Ось Ү	Ось Z
Шум квантования	м/с	$1.8394 \cdot 10^{-4}$	$2.4661 \cdot 10^{-4}$	$8.6055 \cdot 10^{-4}$
Дрейф ускорения	${ m M/c}/\sqrt{ m ч}$	0.1609	0.1229	0.1436
Нестабильность смещения нуля	м/с/ч	18.8812	16.1275	8.8072
Дрейф скорости	$_{\rm M}/c^2/\sqrt{\rm q}$	0.0279	0.0167	0.0116
Мультипликативная погрешность	м/с ² /ч	_	_	_

Таблица 3. Значения коэффициентов ошибок для акселерометра ADIS16448

5. ЗАКЛЮЧЕНИЕ

В настоящей работе была приведена классификация типов погрешностей датчиков инерциальных навигационных систем, при которой параметры ошибок датчиков определяются двумя способами, с помощью дисперсии Аллана и спектральной плотности мощности; были измерены параметры ошибок для инерциальной сборки ADIS16448. Получено практическое подтверждение возможности получения дисперсии Аллана из спектральной плотности мощности для данных выборок.

Адаптация для выполнения в реальном времени существующих методов оценки рассмотреннных зависимостей приводит к возможности решения широкого класса задач по взаимной компенсации показаний разнородных типов датчиков.

СПИСОК ЛИТЕРАТУРЫ

- 1. IEEE Standart Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros (IEEE Std 952 – 1997 (R2008))
- 2. Гольденберг Л. М., Матюшкин Б. Д. "Цифровая обработка сигналов" М.: Радио и связь, 1985.
- 3. Haiying Hou, "Modeling Inertial Sensors Errors Using Allan Variance", University of Calgary
- 4. Dr. Walter Stockwell "Angle Random Walk", Crossbow Technology, Inc. Visited 2008
- 5. Yiter Yuskel, Huseyn Burak Kaygisiz, "Notes on Stohastic Errors of Low Cost MEMS Inertial Units"
- 6. Hanspeter Schmid, "Offset, flicker noise, and ways to deal with them", 2008
- 7. Lawrence C. Ng, "On The Application of Allan Variance Method for Ring Laser Gyro Performance Characterization"

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 14 № 4 2014

338

8. Xin Zhang, Yong Li, Peter Mumford, Chris Rizos, "Allan Variance Analysis on Error Characters of MEMS Inertial Sensors for an FPGA-based GPS/INS System"

Error Classification and Approximation in Inertial Navigational Systems

M.A. Litvin, A.A. Malyugina, A.B. Miller, A.N. Stepanov, D.E. Chickrin

This paper presents estimation of error parameters of inertial sensors using two different concepts: Allan variance and power spectral density (PSD). The article describes major sources of various noise components and their properties.

KEYWORDS: inertial navigational systems, measurement errors, error estimation, PSD, Allan variance, MEMS.