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Abstract—The theory of Compressed Sensing (highly popular in recent years) has a close relative that
was developed around thirty years earlier and has been almost forgotten since – the design of screening
experiments. For both problems the main assumption is sparsity of active inputs, and the fundamental
feature in both theories is the threshold phenomenon: reliable recovery of sparse active inputs is possible
when the rate of design is less than the so-called capacity threshold, and impossible with higher rates.

Another close relative of both theories is multi-access information transmission. A collection of tight
and almost tight screening capacity bounds for non-adaptive experimental designs were obtained by
1980. We compare here the simulated capacity and operation time of two analysis methods: (i) linear
programming relaxation methods used in compressed sensing, and (ii) separate testing of inputs for non-
adaptive strategies. The parallel implementation of the latter allows fast processing of high-dimensional
models.

KEYWORDS: Random design, active inputs, separate testing of inputs, sparsity, linear programming re-
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1. Outline of history and content

The idea of using ‘sparsity’ of inputs actively influencing various phenomena appears repeatedly throughout
a diverse range of applications in fields from computational biology to machine learning and engineering.
Notably, [11] used the assumption of sparsity of contaminated blood donors to dramatically reduce the
number of experiments needed to adaptively screen them out. Troubleshooting complex electronic circuits
using a non-adaptive identification scheme was considered in [35] under the assumption that only a few
elements (a sparse subset) become defective. A recent application of these ideas enabled affordable genetic
screening to successfully eliminate lethal genetic diseases prevalent in an orthodox Jewish community in
New York city, as described in [12].

Successful optimization of industrial output for dozens of real world applications was reported in [5]. They
used the sparsity assumption of non-negligible (active) coefficients in the multivariate regression model
of second order, randomized design, and proposed the Random Balance Method (RBM) of analysis of
outputs. Their method of analysis was essentially, a visual greedy inspection of scatterplots to identify the
most active inputs and consequent optimization of the model with only active inputs influencing the output.

The RBM was inspired by the celebrated Fisher’s idea of randomization which has been proposed to get rid
of the undesirable bias of estimates due to hidden lurking variables at the expense of their somewhat larger
standard deviation. Presently, the randomization is a necessary requirement in planned experiments ([27],
chapter 3).

The RBM was officially buried by the leading Western statisticians (G.E.P. Box, D.R. Cox, O. Kempthorne,
W. Tukey et al) in their unjustified disparaging discussion following the publication of [5] in the first vol-
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ume of Technometrics. They especially ridiculed the analysis of results different from the conventional Least
Squares (LS) method, and the random design of less support cardinality than the total number of parameters
which later was proved not only appropriate but even asymptotically optimal for sparse models! As a result,
F.E. Satterthwaite, the author of RBM, suffered a breakdown and was confined for the rest of his life to a
psychiatric clinic. In the A. N. Kolmogorov’s lab, the team of his deputy - gifted self-taught applied statisti-
cian V. V. Nalimov, tested the RBM on real and simulated problems [32] which showed RBM’s remarkable
efficiency and leaded to the claim in [28]: ‘This method is the triumph of psycho-physiological experimental
intuition. Mathematicians will never understand the reasons for its effectiveness!’ It sounded like challenge!
As a reply, L.D. Meshalkin soon published in [26] a combinatorial result which in an idealized situation
implied that RBM can work. Two years later [25] explained the information-theoretic grounds of the [26]’s
result.

Ironically enough, W. Tukey, one of the RBM’s harshest critics, soon after the aforementioned fatal dis-
cussion paper, became a supervisor of an undergraduate student named David Donoho in Princeton. After
more than forty years since that sad story, Donoho initiated and successfully marketed an enthusiastically
accepted revival of related ideas under the name ’Compressed Sensing’ for estimation in over-parameterized
linear models with L1-penalty analysis (basis pursuit). It was also proposed around the same time in [33]
under the name of LASSO for related statistical problems. Neither of the authors were aware apparently of
the connection to the RBM method. Thanks to D. Donoho’s popularity, sparsity is now a well established
assumption in statistical applications!

The threshold phenomenon was observed in [10] as a result of intensive simulation performed for random-
ized designs. Connection to Shannon’s celebrated justification for a closely related phenomenon arising in
information transmission using his notion of the channel capacity started to be noticed only later. Numerous
publications on compressive sensing during the last decade are listed on www.dsp.ece.rice.edu/cs.

Asymptotically sharp capacity bounds inspired by the Multi-Access Capacity Region construction were
obtained in [18,20] for brute-force (BF) analysis and in [17,19] for separate testing of inputs methods (STI)
which replaced the visual inspection of scatterplots in [5] with the Empirical Shannon Information (ESI)
maximization criterion first introduced in [7] for conventional communication problem. These bounds can
greatly enhance current understanding of the threshold phenomenon in sparse recovery.

These bounds are obtained for asymptotically optimal designs (which turn out to include random designs)
and thus imply upper bounds for the performance of recovery under arbitrary designs. Since R. Fisher,
random designs are a simple natural choice for planned experimental design enabling bias reduction due to
lurking variables [27], and they additionally enable the effectiveness of the STI analysis of asymptotically
optimal ESI maximization between inputs and the output. The STI replaces the visual inspection in RBM
[5]. The STI and greedy STI capacities outperform that of Linear Programming relaxation for randomized
designs in a wide range of models (see our sections 3-4) and admit a straightforward generalization to
nonparametric noisy models including ‘colored noise’, see [14] .

The parallel implementation of the STI outlined in our paper allows fast processing of high-dimensional
models which are hard to even process with LP relaxation.

Another novelty of this paper is the theory of STI for factorial models under random designs which further
validates the ideas of the RBM’s authors and establishes the factorial models as linear models in even higher
dimensions. This theoretical development is complemented by our novel intensive parallel implementation
of the STI simulation for factorial models.

The outline of the rest of the paper is as follows:

2. Introduction and elementary models
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3. Factorial models

4. Matrix design

5. The MPI system

6. The general program execution

2. Introduction and the main models

To illustrate ideas of this paper we utilize the following example of the ALOHAnet (see Wikipedia) in order
to tie the ideas together. Suppose that one has a large collection of t enumerated satellites (say, t=1000) which
are used to receive and transmit packets of information. Now suppose there is small subset Λ = (λ1, . . . , λs)
of satellites which have packets ready for transmission. These satellites begin to be active during the spe-
cially arranged announcement time-window, when they synchronously indicate their readiness, while the
rest t − s satellites are silent. The λ-th active satellite uses binary string xN (λ) := xN1 (λ) to announce
its readiness. If transmissions of these strings do not interfere, all xN (λ) must simply be distinct for the
receiver to identify all active inputs. Since all announcements are sent synchronously, there exists an inter-
ference between them which is modeled as follows: the receiver gets a string yN := yN1 which components
yi are a known function g(xi(λ)) for every i-th time-point. These transmitted mixtures can be also corrupted
by noise to zN . The concatenation of mixing and noise is the Multi-Access Channel (MAC), see [2]. This
scheme is illustrated in the following Fig. 1.

Figure 1. Multi-Access Channel.

The receiver of (noisy) output sequence zN := zN1 knows the encoding matrix (design)

XN = (xi(λ), i = 1, . . . , N ; λ = 1, . . . , t),

the mixing function g(·), and makes decision Λ̂ about unknown subset Λ using certain analysis method.
Decision Λ̂ is wrong, if Λ̂ 6= Λ. The probability of this event over the Cartesian product of the random
design X , the uniform Λ-distribution over all possible allocations of Λ and noise is called the Mean Error
Probability (MEP).

The simplest models of mixing that we selected for simulation are Boolean Sum, Additive, Linear and
Second Order Factorial Regression Models. Thus to summarize, the general formula is the following:

yi = g(xiΛ), i = 1, . . . , N

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 15 � 3 2015
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x1 x2 x3 x4 . . . xt−1 xt y

1 ±1 ±1 ±1 ±1 . . . ±1 ±1 g(x1,s1 , x1,s2 , x1,s2 , x1,s4)
...

...
...

...
...

...
...

...
...

N ±1 ±1 ±1 ±1 . . . ±1 ±1 g(xN,s1 , xN,s2 , xN,s3 , xN,s4)

Below are three simplest widely used mixing functions:

1. Linear: Linear (in inputs and parameters) model:

yi =
s∑
j=1

bsjxi(sj),

with binary carriers xi(sj) = ±1 and i = 1, . . . , N .

2. Additive (special case of linear model): Additive (in inputs, all parameters are equal to 1) model:

yi =
s∑
j=1

1 · xi(sj),

with binary carriers xi(sj) ∈ {0, 1} and i = 1, . . . , N .

3. Boolean sum: Boolean sum model with binary carriers xi(sj) ∈ {0, 1} with P (0) = 21/s, P (1) =
1− 21/s, i = 1, . . . , N and P (y = 0) = 1/2:

yi =

s∨
j=1

xi(sj),

where
∨

denotes the Boolean sum of binary variables.

In our simulation we assume that |s| ≤ 4. Recovering the set λ of all active inputs (AIs) using the minimal
number of N observations was studied theoretically in [17, 19], and by simulation in [14, 16, 17] determin-
ing s for the Boolean sum, Additive and Linear models (see the next section) using the ESI-minimization
described below.

Earlier results [17,19] suggest that the length of the sequence of active s inputs for t total inputs approaches
C(s) · log2(t), where C(s) is a mixing model and noise. The idea is that any of the silent inputs have
smaller ESI-relation with the output y than the active ones. The formula for the ESI is

ESI(x, y) =
∑
y

∑
x

τ(x, y)log
τ(x, y)

τ(x)τ(y)

where τ(x, y) is the joint frequency of each column’s value with the values of column y which is calculated
as provided above. For the initial phase of the implementation it will be performed for only one input to
clarify the results.

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 15 � 3 2015
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3. Factorial models

We first give here a schematic outline of the celebrated Fisher’s combined ideas of randomization and Com-
plete Factorial Experimentation (CPE) and the so-called Response Surface Methodology (RSM) developed
in [3] and continued by the authors of the RBM.

The RSM models problems in which a response of interest is influenced by several variables and the objec-
tive is to optimize this response, was created during R. Fisher’s work in the Rothamsted agricultural center
near London. For example, the growth of a plant is affected by a certain amount of water x1 and fertilizer
x2. The plant can grow under certain range of treatments x1 and x2 combinations. The RSM is used for
improving and optimizing the response variable. In this case, the plant growth y is the response variable,
it is a function of water and fertilizer as expressed by y = f(x1, x2) + e, where e is random experimental
error which is assumed IID (Independent and Identically Distributed) in the sequence of experiments. In
order to develop a proper approximation for f(·), the experimenter usually starts with a linear function of
independent variables in some operability region O (See figure 2)

Figure 2. How do we get from starting position (x0
1, x

0
2) in the direction of the gradient.

If the response can be adequately described by a linear function of independent variables, then we can find
the direction of the fastest f(·) growth and move the operability region in this direction. If a significant
curvature in the response surface is established, then a higher degree polynomial should be used. The next
to apply is a mixed first and second-order model

yi = m0 +
d∑
1

θ(β)xi(β) +
d∑

β=1

β−1∑
α=1

θα,βxi(α)x(β) + ei, i = 1, . . . , N, (1)

which can approximate a maximum of f(·), at least if it is in O. The CPE theory specifies O in case of d
independent variables as a cube of dimension d and proves some optimality of measurements in its vertices.
This cube can be rescaled as a unit cube. If saddle type surfaces cannot happen, then G.E. P. Box argued
that the most economical way to detect a curvature is to place some control measurements in the center of
the cube. If saddle points cannot be excluded, then measurements in additional locations should be added,
see [24]. In what follows, we omit interceptm0 from consideration, since a single measurement at the center
suffices to estimate it. The full second order model requires measurements in some additional points, see [3].

Among CPE(d) advantages found by R. Fisher, is the joint IID property of LS-estimates for all main effects
and interactions, and their variance minimality as compared to all other designs of the same number of
experiments. A major problem with the CPE(d) for large d is an exponential growth of experiments with
d → ∞. Fisher, Yates and their followers proposed an algebraic theory of fractional CPE see [4], which

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 15 � 3 2015
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reduced the support of the design several times at the expense of lack of estimability of substantial part of
coefficients.

3.1. RSM under sparsity assumption

If dimension d is too large and additional measurements are too expensive, the RBM authors essentially
proposed in a vague form a new paradigm: estimating the linear model (and in case of its inadequacy,
the factorial second order model consisting of pairwise interactions) under assumption of sparsity of
coefficients in both linear and factorial models, and a random sample of measurements among the CPE
vertices. Their many applications showed fruitfulness of this approach! Among the origins of the sparsity
hypothesis is the ‘Occam razor’ or ‘bottleneck’ principle stating that many phenomena have few significant
factors ruling it. Of course, this principle is not applicable everywhere! For example, certain traits in genetics
are ruled by few genes, but others, like height, depend on enormous number of genes.

Let us now study the consequences of these two assumptions theoretically. We show the asymptotic validity
of the Fisher’s CPE optimality properties under these two assumptions for the mixed second order factorial
model with d → ∞ variables and total number t = d1,2 := d + 2

(
d
2

)
ordered coefficients. We process STI

easily and rapidly for d of around 1000 in parallel, while its popular rival—Linear programming relaxation
has major problems in processing such a big data. The generalization to factorial model of larger order
is straightforward. Our focus will be on models with small noise under continuous prior distribution of s
active (non-null) coefficients of the model. The latter assumption implies incommensurability of active
coefficients (validity of condition U of [14]) with probability 1. Let us denote by µ the minimal distance
between 2s combinations {

∑
±b(a)} := V of active coefficients.

Theorem. 1) Consider measurements (1) of the mixed factorial model of order 2 with constant variance σ2

over the uniform random sample of vertices of a unit cube O of size N. 2) Assume that only fixed number s
of incommensurable coefficients of the model (1) are non-null (sparsity of active coefficients) and σ = kµ.
3) Let the following asymptotic relations hold: NCσ(s)/ log d1,2 ≥ (1 + ε), k → 0 as d → ∞ for some
ε > 0, here Cσ(s) → 1 as σ → 0, is the capacity of the additive channel (1) converting equally likely 2s

linear combinations of AIs into the noisy measurements z belonging to asymptotically disjoint output clouds
around elements of V .

Then all active coefficients of the model admit jointly asymptotically unbiased estimate with probability
approaching 1 as d → ∞ and covariance matrix of these estimates converges to (1/N)I, where I is the
identity matrix.

The estimation goes in two steps. In step 1, we determine the set of all active variables with probability
converging to 1. Step 2 is the LS estimate in the reduced model consisting only of s active inputs.

Remarks 1. The capacity under arbitrary set of incommensurable active coefficients is the same.

2. In applications, the assumption (2) is replaced with an empirical one - that only s coefficients and all
their linear combinations with coefficients ±1 significantly surpass the standard deviation of the additive
noise.

Lemma. All x(α) and all interactions of any order are mutually independent and uniformly distributed in
vertices of O.

For notational simplicity, let us confine the proof of the lemma to typical interactions x(1)x(β), β = 2, 3.
Their joint Moment Generating Function MGF (u2, u3) = E[exp

∑3
β=2 uβx(1)x(β)], due to the joint

independence of all x(β). Now for β = 2, 3, we have

Ex(1)[exp [x(1)
∑

uβx(β)]] = Ex(1)[ch(v2)ch(v3)] = ch(u2)ch(u3),

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 15 � 3 2015
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Figure 3. Outline of limiting scatter diagrams: a significant variable X(a), no noise.

where vβ = x(1)u(β).

Thus, random variables x(1)x(β), β = 2, 3 are IID—their joint MGF is the product of identical functions.
Extending the proof to the general case is straightforward.

Proof of the theorem. The lemma states that the factorial model is linear model of dimension d1,2 with
jointly independent carriers ±1.

We first consider the STI-detection of AIs without noise under condition U on significant coefficients. We
examine all pairs (xN (a), zN ), where xN (a) is the binary input column and zN is the output column with
components taking 2s values.
Let us assume for definiteness WLOG that variables x(1), . . . , x(s) are AI.
Fixing the value of one of them (say, the first) we still have 2s−1 equally likely combinations of the rest with
coefficients ±1.

In the left (right) hand side of the scatter diagrams corresponding to x(a) = ±1 we have non-overlapping
sets of outputs y − ba (y + ba), respectively, with coefficients ba, a = 1, . . . , s; y, where y ∈ Aa, Aa
is the set of linear combinations of significant variables different from X(a). The cardinality |Aa| is 2s−1.
Hence for each significant variable X(a) we have a separate partition of the output set Z into two subsets
{±ba +Aa} displayed on the scatter diagrams.

It is clear that I(x1 ∧ Y ) = H(y) − H(Y |x1) = 1. Thus CSTI = CBF > CLP . The last inequality
follows from the results of simulation in Fig 12, which also shows that the LP-capacity shrinks with growing
s in contrast to that of STI. The first equality follows also from elementary combinatorial argument: A
particular inactive input can be regarded as active by STI, if 2s output values of its both partial scatterplots
shrink to 2s−1 for random design with N > (1 + ε) log t rows, ε > 0. These events are independent
and have probability 1/2 for every row. Thus it happens for at least one of inactive inputs with probability
≤ (d1,2 − s)2−N ≤ d−ε1,2. Since ε > 0 is arbitrary, the STI capacity for random design ≥ 1. If we assume
a continuous prior distribution for the active (non-null) coefficients of this extended model, then all these
active coefficients are incommensurable (i.e. condition U of [14] is valid) with probability 1, and thus all
arguments of [14], section 4 for the noiseless linear model remain valid. Informal explanation of proof:
Every measurement gives almost s bits of information on the allocation of active coefficients. Since the
entropy of the uniformly distributed uncertainty about the subset of active inputs is log Πs−1

j=0d
s−j
1,2 � s log t,

we get an asymptotic expression N � log d1,2. We get asymptotically one bit of information from each

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 15 � 3 2015
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measurement on whether a fixed input is active, but uncertainty is only log d1,2 asymptotically as d → ∞.
Hence the result.

Its generalization to noisy models is straightforward due to the asymptotic disjointness of clouds around
elements of V . As a result, the STI has asymptotically the same capacity as the brute force analysis meaning
that

lim inf NC(s)/ log d1,2 ≤ 1,

where d1,2 is the dimension of the mixed model and N is the number of measurements providing the mean
error probability less than arbitrary γ > 0 which slowly converges to 0 as d → ∞. Informally, C(s) is the
entropy of the same distribution of each noisy cloud around elements of V .

We expect the simulation results for the second order factorial model can show somewhat less capacity as
compared to the linear one because the standard ‘random number generators’ we use are not perfect and
give worse performance for larger simulation size.

3.2. Simulation for 2nd Order Factorial model

2nd Order Factorial: In the Second Order Factorial (in inputs and parameters) model:

yi =
∑
β,α∈S

θβ,αxi(β)xi(α),

with binary carriers xi(sj) ∈ {0, 1} and i = 1, . . . , N and only those coefficients S = {1, ..., s}. The
coefficients of this model are θ1,2 = 1 and θ3,4 =

√
2 and 0 otherwise. Thus the implemented equation for

s = 2 would be:
yi = 1 · xi(s1) · xi(s2) +

√
2 · xi(s3) · xi(s4)

with binary carriers xi(sj) ∈ {0, 1} and i = 1, . . . , N .
The coefficients of this model are θ1,2 = 1, θ2,3 =

√
2 and 0 otherwise. Thus the implemented equation

for s = 2 would be:
yi = 1 · xi(s1) · xi(s2) +

√
2 · xi(s2) · xi(s3)

4. The Matrix Design

The implementation we chose is via the use of matrices, which generally follow the same design for all the
models. Below is the general matrix design for the Linear Model, the Additive Model and the 2nd order
factorial model as follows:


1 2 · · · s s+ 1 · · · t

1 {−1, 1} {−1, 1} . . . {−1, 1} {−1, 1} . . . {−1, 1}
2 {−1, 1} {−1, 1} . . . {−1, 1} {−1, 1} . . . {−1, 1}
...

...
...

. . .
...

...
. . . {−1, 1}

N {−1, 1} {−1, 1} . . . {−1, 1} {−1, 1} . . . {−1, 1}



Y

gmodel([1, 1 . . . s]) 7→ y1

gmodel([2, 1 . . . s]) 7→ y2
...

...
gmodel([N, 1 . . . s]) 7→ yN


For the Boolean Sum Model the matrix is the following:

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 15 � 3 2015
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
1 2 · · · s s+ 1 · · · t

1 {0, 1} {0, 1} . . . {0, 1} {0, 1} . . . {0, 1}
2 {0, 1} {0, 1} . . . {0, 1} {0, 1} . . . {0, 1}
...

...
...

. . .
...

...
. . . {0, 1}

N {0, 1} {0, 1} . . . {0, 1} {0, 1} . . . {0, 1}




Y

[1, 1] ∨ [1, 2] ∨ · · · ∨ [1, s] 7→ {0, 1}
[1, 1] ∨ [1, 2] ∨ · · · ∨ [1, s] 7→ {0, 1}
...

...
[1, 1] ∨ [1, 2] ∨ · · · ∨ [1, s] 7→ {0, 1}



4.1. Linear Programming (LP) Relaxation, Hybrid LP-BF

Let us outline the use of Linear Programming (LP) relaxations for both linear and nonlinear (boolean sum)
models. For the linear version of the problem we use the popular `1-norm relaxation of sparsity. Here the
problem in Fig.1 can be rewritten as

Λ̃ = min |Λ|, such that yi =
∑
a∈Λ

xi(a), ∀i. (2)

Here |Λ| is the number of elements in Λ. Let us define the indicator function IΛ such that IΛ(a) = 1 iff
a ∈ Λ, and notice that the `1-norm of IΛ, i.e. on

∑
a IΛ(a). Note that the range of IΛ is D = {0, 1}, so

it is always nonnegative, and instead of
∑

a |IΛ(a)| we can use
∑

a IΛ(a). We introduce the relaxation by
replacing the minimization over D with that over the continuous range [0,1]

Λ̃ = min
∑
a

IΛ(a), such that yi =
∑
a∈Λ

xi(a), ∀i. (3)

This type of relaxation has received considerable amount of attention in many fields, including statistics
(Lasso regression, [33]), and in signal processing (basis pursuit, [8,9], [13]). While the much simpler linear
programming relaxation is not guaranteed to solve the original combinatorial problem, both theoretical and
simulated study over the the random design showed that if the unknown sparse signal is ’sparse enough’,
then the linear programming relaxation exactly recovers the unknown signal ([10] et al) with high prob-
ability summarized in the following sentence from [10]: ‘for many (design) matrices there is a threshold
phenomenon: if the sparsest solution is sufficiently sparse, it can be found by linear programming’.

For the non-linear problem we are forced to relax not only the sparsity of the indicator vector IA, but also
the measurement model.

Since yi = ∪a∈Axi(a), then it must hold that yi ≤
∑

a∈A xi(a). Hence, our first relaxation is

min
∑
a

IA(a) such that yi ≤
∑
a∈A

xi(a), 0 ≤ IA(a) ≤ 1. (4)

We also note that if yi = 0, then it must hold that all xi(a) = 0 and the inequality yi ≤
∑

a∈A xi(a) holds
with equality. Hence, a stronger relaxation is obtained by enforcing this equality constraint.

min
∑
a

IA(a) such that 0 ≤ IA(a) ≤ 1, and yi ≤
∑
a∈A

xi(a), if yi 6= 0 and (5)

yi =
∑
a∈A

xi(a) if yi = 0. (6)

Thus taking into account particular features of this nonlinear model before applying linear programming
is essential. To our knowledge, bounds for the performance of this linear programming relaxation of the
nonlinear screening problem have not been studied in the literature.

Interesting relations between combinatorial properties of design matrices and correctness of the LP solution
are in [15].
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5. The Parallel Implementation

The parallel implementation was performed via the MPI (Message Passing Interface). The main idea was
to keep only one random vector at a time in memory across multiple compute-nodes, while collecting the
necessary information for the ESI-calculation before randomizing it again. This design allowed for testing
convergence for larger values of t of the different models. Below is a representation of this vector as an array
across the compute-nodes denoted as CPUs:

Figure 4. Illustrated is the array structure that is split across multiple compute nodes (CPUs) as a parallel MPI-enabled program.

As each array element will generate eventually an ESI-value, these then can be compared with each other.
In an MPI-system the ability to broadcast the values among compute-nodes enables one to perform the
convergence of N in parallel. For example, if the maximum value of all the silent elements from each
compute-node is transmitted to the first node, then one can compare each node-specific maximum value
with the minimum value of ESI from the active ones. If 95% of the time the active ones have a higher value
than all the inactive ones then we say that convergence has been reached for that specific combination of s
and t of the particular model, otherwise N is increased by one and the test for convergence is performed
again. The value for Λ̂ is calculated on the first node and then broadcast to all the others as it is needed for
the element-wise ESI calculated on each compute-node.

5.1. The Linear Model

Below are the converged values N for s = {2, 3, 4} and d, for powers of two, which should be increased by
s since the program was run with s as a separate matrix:

s
d

8+s 16+s 32+s 64+s 128+s 256+s 512+s 1024+s 2048+s 4096+s 8192+s 16384+s

2 10 12 14 15 18 18 21 23 25 26 27 28
3 14 16 18 20 22 23 26 27 28 31 33 33
4 20 23 26 27 29 30 32 33 36 38 39 39

Table 1. The converged values of N for the linear model.

Below are plots of N versus log2(t) for the linear regression model :
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(a) For s = 2, the linear regression is N =
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(b) For s = 3, the linear regression is N =
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(c) For s = 4, the linear regression is N =
1.80 · log2(t) + 15.54

Figure 5. Linear regressions of of N versus log2(d) for s = 2, 3, 4 for the linear model using STI.

Below is the table to summarize the coefficients of log2(d) in relation to s:

s Coefficient of log2(d)

2 1.73
3 1.84
4 1.80

Table 2. The coefficients of log2d with respect to s for the linear model using STI.

The linear regression of the above relation is the following with a plot below illustrating it:

Coefficient of log2(d) = 0.033 · s+ 1.69.
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Figure 6. Linear regression of the coefficient of log2(d) versus s for the linear model using STI.

5.2. The Additive Model

Below are the converged values N for s = {2, 3, 4} and d, for powers of two:
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s
d

8+s 16+s 32+s 64+s 128+s 256+s 512+s 1024+s 2048+s 4096+s 8192+s 16384+s

2 18 20 21 23 24 29 29 32 35 36 40 41
3 33 36 42 47 53 57 58 64 69 78 81 82
4 66 81 84 89 104 117 123 131 141 144 145 151

Table 3. The converged values of N for the additive model using STI.

Below are plots of N versus log2(t) for the additive model:
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(a) For s = 2, the linear regression is N =
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(b) For s = 3, the linear regression is N =
4.83 · log2(t) + 16.91
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(c) For s = 4, the linear regression is N =
8.25 · log2(t) + 43.64

Figure 7. Linear regressions of N versus log2(d) for s = 2, 3, 4.

Below is the table to summarize the coefficients of log2(d) in relation to s:

s Coefficient of log2(d)

2 2.22
3 4.83
4 8.25

Table 4. The coefficients of log2d with respect to s for the additive model using STI.

The linear regression of the above relation has the coefficients 3.02 · s− 3.95 of log2(d)
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Figure 8. The plot of the coefficient of log2(d) versus s the additive model using STI.
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5.3. The Boolean Sum Model

Below are the converged values N for s = {2, 3, 4} and d, for powers of two:

s
d

8+s 16+s 32+s 64+s 128+s 256+s 512+s 1024+s 2048+s 4096+s 8192+s 16384+s

2 16 25 32 34 40 47 50 51 59 62 66 66
3 29 39 42 54 67 73 74 86 107 116 120 128
4 26 46 61 74 87 88 114 127 141 143 158 162

Table 5. The converged values of N for the boolean sum model using STI.

Below are plots and linear regression models of N versus log2(d):
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(a) For s = 2, the linear regression is N =
4.59 · log2(t) + 6.35
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(b) For s = 3, the linear regression is N =
9.59 · log2(t)− 4.36
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(c) For s = 4, the linear regression is N =
12.90 · log2(t)− 8.75

Figure 9. Linear regressions of N versus log2(t) for s = 2, 3, 4 for the boolean sum model using STI.

Below is a table to summarize the coefficients of log2(t) in relation to s:

s Coefficient of log2(d)

2 4.59
3 9.59
4 12.90

Table 6. The coefficients of log2d with respect to s for the boolean sum model using STI.

The linear regression of the above relation is the following with a plot below illustrating it:

Coefficient of log2(d) = 4.15 · s− 3.43.
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Figure 10. Illustrated is the plot of the coefficient of log2(d) versus s for the boolean sum model using STI.

5.4. The 2nd Order Factorial for y = 1 · x1x2 +
√
2 · x1x3

Below are the converged values of N :

s
d

8 16 32 64 128 256 512 1024

nCr(t, 2)→ 28 120 496 2016 8128 32640 130816 523776
N for s = 2 17 21 30 34 35 43 46 52

Table 7. The converged values of N for the 2nd order factorial model (y = 1 ·x1x2 +
√

2 ·x1x3) using STI.

Below is the plot and linear regression model of N versus log2(d):
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Figure 11. The plot of N versus log2(d) for s = 2 for the 2nd order factorial model (y = 1 · x1x2 +
√
2 · x1x3) using STI.

The linear regression function is N = 2.44 · log2(d2) + 3.02.

5.5. The 2nd Order Factorial for y = 1 · x1x2 +
√
2 · x3x4

Below are the converged values of N :
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s
d

8 16 32 64 128 256 512 1024

nCr(t, 2)→ 28 120 496 2016 8128 32640 130816 523776
N for s = 2 13 18 21 23 27 28 31 36

Table 8. The converged values of N for the 2nd order factorial model (y = 1 · x1x2 +
√

2 · x3x4).

Below is the plot and linear regression model of N versus log2(d):
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Figure 12. The plot of N versus log2(d) for s = 2 for the 2nd Order Factorial for y = 1 · x1x2 +
√
2 · x3x4.

The linear regression function is N = 1.49 · log2(d2) + 5.20.

5.6. The LP Linear Model

Below are the converged values N for s = {2, 3, 4} and d, for powers of two, which should be increased by
s since the program was run with s as a separate matrix:

s
d

8+s 16+s 32+s 64+s 128+s 256+s 512+s 1024+s 2048+s 4096+s 8192+s 16384+s

2 12 13 14 17 18 19 21 23 26 27 29 30
3 14 20 22 22 27 29 31 37 37 39 43 48
4 16 23 25 30 37 44 49 55 56 56 68 69

Table 9. The converged values of N for the LP linear model.

Below are plots of N versus log2(t) for the LP linear regression model :
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(b) For s = 3, the linear regression is N =
2.91 · log2(t) + 5.81
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(c) For s = 4, the linear regression is N =
5.06 · log2(t) + 0.47

Figure 13. Linear regressions of of N versus log2(d) for s = 2, 3, 4 for the linear model using LP.

Below is the table to summarize the coefficients of log2(d) in relation to s:

s Coefficient of log2(d)

2 1.77
3 2.91
4 5.06

Table 10. The coefficients of log2d with respect to s for the LP linear model using STI.

The linear regression of the above relation is the following with a plot below illustrating it:

Coefficient of log2(d) = 1.65 · s− 1.69.
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Figure 14. Linear regression of the coefficient of log2(d) versus s for the linear model using LP.

Below are the timing results of the STI versus LP approach.
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Figure 15. Plots of N versus log2(d) for s = 2, 3, 4 for STI and LP.

6. Discussion

By analyzing the minimal number N of measurements to obtain Mean Error Probability ≤ 0.05 for each of
the models, we see that our simulation results are in a rather good agreement with our previous theoretical
results on capacity of STI. As we expected, the simulated evaluation of the capacity for the second order
factorial model shows more variability than for the linear model which was shown theoretically equivalent
to it. Apparently, the reason is in a huge dimension of the factorial model which reveals the imperfection of
the ‘random number generator’ used. For the linear, boolean sum and additive models, the number of inputs
is
(
d
1

)
, while the 2nd order factorial model is equi valent to the linear one of dimension 2

(
d
2

)
for the random

design. In all models studied, results for the STI approximate the maximal capacity of the channel. If the
channel capacity for some models empirically either exceeded or felt a little below the theoretical one, that
is due apparently to the imperfections of the random number generators in constructing the matrices.

The MPI [36] approach was to utilize a broadcast/gather method in order to empirically determine minimal
N with MEP ≤ 0.05.
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We tested our results via linear programming (LP) and found that the results coincide with our expecta-
tions. Since STI can be implemented in parallel, we see that this implementation provides an overwhelming
speedup as compared to the LP relaxation which is shown in Fig. 14.

6.1. Parallel Implementation of STI

The MPI System

In order to speed up the implementation we chose to parallelize it using MPI. MPI stands for Message
Passing Interface and has the following structure [36]:

Figure 16. The structure of an MPI-enabled program as constructed so as to become parallel. Each program gets an ID
(rank) by which they can be identified and communicate with each other.

For all the programs the mpi.h header file was required to be added to enable MPI functionality.

Under MPI, one performs the communication among programs through a communicator object, which usu-
ally is just one and set by the program. Below is a visualization of how each program parallel-instance
- illustrated by their ID (rank) as a numbered circle - utilizes MPI_COMM_WORLD as a communication
medium [36].

Figure 17. The communication object (MPI_COMM_WORLD) by which parallel-instances of a program communicate with
each other.
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MPI Broadcast

Using the MPI_Bcast(), below is a diagram that explains how node 0 - in this instance - broadcasts its
value to all other nodes [37].

Figure 18. Illustrated is how node 0 broadcasts its value to all other nodes, which also have the same variable.

MPI Gather

Using the MPI_Gather(), below is a diagram that explains how all nodes send their values to node 0 - in
this instance - where node 0 stores the values in an array [37].

Figure 19. Illustrated is how all nodes send their value to node, which has an array variable.

MPI Barrier

Using the MPI_Barrier(), below is a diagram that explains how all nodes synchronize at points in the
program where such a procedure is placed [38]:

Figure 20. Illustrated is how all nodes synchronize at points of the parallel programs where the procedure
MPI_Barrier() is placed.
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Enabling the Run Environment

The first step is to add the library (file) dependencies on which our program is built upon. This is performed
using the following commands:

module add gcc/4.8.2
module add slurm/2.6.6
module add mvapich2/gcc/64/2.0b

Node Allocation

Next the allocation of compute nodes, upon which the MPI program is run was performed using the salloc
command. This command is a part of the open-source SLURM package [39], developed at the Lawrence
Livermore National Laboratory. Below is the command that was issued for utilizing four nodes:

salloc -N 4 -p sched_neu_cooperman -time=4:00:00 -exclusive

Compiling the Code

Next the compilation of the code was performed using the custom mpicc wrapper script, which is called c.
Below is the listed code:

#!/bin/bash
var=‘echo $1 | sed s/..$//g‘
mpicc -std=gnu99 $1 -o $var

Running the Compiled Code

The execution of the compiled programs was performed using the srun (SLURM command) with MPI
features enabled [40], for which a custom script - called m-with-nodes - was created per model and is
listed below1:

#!/bin/bash
mpirun -n ${1} ./$2 $3 $4 $5 $6 $7 $8 $9

Below is an example of running each of the programs:

./run_linear_model.pl 27 128 4 4

./run_additive_model.pl 117 512 4 4

./run_boolean_sum_model.pl 50 1024 2 4

./run_2nd_order_factorial_model.pl 43 512 1 2 1 3 4

./run_2nd_order_factorial_model.pl 28 512 1 2 3 4 4

Below is an example of a run:

1 This program was corrected to run using mpirun, where previously it was using srun. Not all the results have
been re-run because of time constraints, but through sampling the results are similar and thus the previous results
have been provided.
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./run_linear_model.pl 8 8 2 4

t = 8

s = 2

For N = 8, 9 out of 100 rounds gave an error. N will be incremented by 1.

For N = 9, 9 out of 100 rounds gave an error. N will be incremented by 1.

For N = 10, 3 out of 100 rounds gave an error. N will be incremented by 1.

CONVERGED! For s = 2 and t = 8, N = 10

The General Program Execution

Below is a diagram that describes the flow of the program. The model.c program is the one that executes
one instance of the N, t, and s variables and reports back a 1 or -1. If the value is 1 then all the values of
ESI for the s matrix are greater than then ones for the t matrix, otherwise that is considered an error. The
Perl program keeps running the model.c for 100 times while counting the number of errors. If the error
is greater than 5 then N is incremented, otherwise N is reported as convergence for an error of 5%. The
model_declarations.c program provides the functions and variable declarations.

Figure 21. Illustrated is program flow. The Perl program executes the model.c program, while the
model_declarations.h header file provides the functions and variable declarations.

For each program the execution is performed on a row-wise approach. Thus until N is reached a new s and t
row is generated and the τ() (i.e. count) with the ESI calculations are performed. Afterwards the s and t row
recreated in the next round. Therefore, instead of keeping a whole matrix in memory - this would allow for
larger t and N values to be interrogated. Below is the general flow of the programs:

To launch the MPI programs, one just provides the program with an initial N , t and s parameters to the
model.c program. The general idea of how it works is as follows:

Algorithm 1. Implementation of MPI of STI

INPUT: N, d, s

ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÏÐÎÖÅÑÑÛ ÒÎÌ 15 � 3 2015



372 MALYUTOV, GROSU, SADAKA

Figure 22. Illustrated is row-wise approach of the programs. The Perl program executes the model.c program, which
in turn calls the performAnotherRound() procedure in the model_declarations.h header file to create and
process a new s and t row.

OUTPUT: 1 if N converged, otherwise -1

1: procedure (∀ nodes, where each node is assigned a unique id ∈ {0, . . . , |nodes| − 1})
2:

3: row ← 0
4:

5: while row < N do
6:

7: row ← row + 1
8:

9: if nodeId == 0 then
10: select randomly a node to generate the s vector
11: generate s vector on random node
12: broadcast s to all other nodes
13: end if
14:

15: generate subvector of d based on the node number as an offset, where |subvector| ≈ d

|nodes|
16: generate y (output) based on s
17: collect statistics of each vector element as compared to y
18:

19: end while
20:

21: calculate ESI for each column.
22: calculate ESI difference = [min(ESI) ∈ s]− [max(ESI) 6∈ s] and broadcast to node 0
23:

24: if nodeId == 0 then
25: if ∃ ESI difference < 0 on any node then
26: print −1
27: else
28: print 1
29: end if
30: end if
31:

32: end procedure
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If the Perl program notices that the output of -1 was more than 5 out of 100, then N is increased the
model.c program is launched again with N = N + 1 until convergence.

7. Conclusions and future directions

The STI implementation in parallel can enable much faster computation, especially in comparison to much
slower LP relaxation. We plan to demonstrate even faster STI parallel implementation on larger clusters of
computers. A parallel simulated evaluation of the capacity and processing time for the full second order
sparse multivariate model is presently under way for the maximin design studied in [24]. This development
will be described in our next paper.
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Appendix. Sketch of comparative portraits — G. E. P. Box (1919-2013) and
V. V. Nalimov (1910-1997)

Let us reveal additional information on two heroes of our main part and striking difference of conditions
they worked under.

Statistics in England has been highly respected, especially since F. Galton’s ‘Statistics heir’ Karl Pearson, the
head of Biometry lab and co-founder of journal ‘Biometrika’. English Statistics has had excellent tradition
of combining theoretical and applied studies. This is fully true for R. A. Fisher and his son in law, G. E. P.
Box. The WW2 prevented the latter from completing his Chemistry B. S. He spent WW2 in a military anti-
poison-gas detachment participating in experiments over animals where he learned importance of statistical
methods. He was sent once to R. A. Fisher for consultations. He was paid by the Army to get the Statistics
B. S. in one of London Universities under supervision of E. Pearson, K. Pearson’s son. Incidentally, he had
his internships in Imperial Chemicals, who offered him a job and paid for his fulfilling Masters in Statistics.
He worked there 8 years (with some breaks) over yield optimization of their production. Then he moved to
NC University, Raleigh and to the Princeton University in the US. Eventually, he organized a Statistics Dept.
at Wisconsin which became a center of excellence in the field. His most famous quotation is ‘All models are
wrong but some are useful’.

Soviet leaders hated Statistics because of its objectivity and completely eliminated it in Economics, So-
ciology, Biology, etc. The reason for it to survive at all was preparation of the main present to the 70th
anniversary of tyran I. Stalin—nuclear bomb. Physisists and mathematicians involved in that project were
almost free to do whatever they regarded helpful for the project. In a top level official meeting on what to do
with Probability and Statistics, mathematicians pretended to agree with the slogan ‘Science is against ran-
domness’, but insisted that randomness must be studied to fight against it. They were supported by a mighty
artillery fire dispersion research group that had been assisted by Kolmogorov during the WW2. Thus, sev-
eral centers were allowed to continue work including the Statistics Dept., Steklov Mathematics Institute in
Moscow headed by the coauthor of the Kolmogorov-Smirnov celebrated criterion. L. N. Bolshev, Smirnov’s
deputy, a brilliant researcher and lecturer, a WW2-pilot-fighter, will play a role in our future story.

V. V. Nalimov left Mathematics Dept. of Moscow University in 1929 after the first year of education in
protest to discrimination practices cultivated there. He worked both in civil and military research labs be-
fore imprisonment in 1936 for his involvement in social activities that were regarded as subversive by the
authorities. He managed to do almost impossible thing—survive in labor camps, and was transferred to the
‘industrial research facility under the bars—sharashka’ inside the Metallurgy plant in Magadan until 1947
He worked with geologists a couple of years followed by an automatic repeated arrest and transfer to the
same kind of sharashka’ in Kazakhstan, 1949-1953 until his release by amnesty in 1953. There he could
request access to the Western research literature and became excited about applying statistical methods. V.
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V. Nalimov was rehabilitated in 1957. In several years he organized a lab in ‘GIREDMET’, where he contin-
ued research he carried out in ‘sharashka’ and prepared two dissertations and his first large book [29]. This
period of his work is described in [1]. V. V. Nalimov was fortunate with a reviewer and editor of his first
book—L. N. Bolshev, who improved its readability and recommended V. V. Nalimov to A. N. Kolmogorov
for a position in a newly organized Lab. of Statistical Methods in Moscow University. V. V. Nalimov him-
self describes this period of his life in [30]. Due to his enthusiasm and successful advertisement, statistics
and design became very popular in the Soviet industrial and applied science communities. G. E. P. Box
visited V. V. Nalimov in the Kolmogorov Lab and brought there later a JMP team for two visits headed
by W. J. Dixon. It is amazing that working under almost intolerable conditions, V. V. Nalimov managed
to contribute significantly to the development of several fields including statistics and experimental design.
This example enables the hope that these sciences will resurrect one day in Russia.
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