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Abstract—Stochastic COntext Tree (abbreviated as SCOT) is m-Markov Chain with every
state of a string independent of the symbols in its more remote past than the context of length
determined by the preceding symbols of this state. SCOT has also appeared in other fields
under somewhat confusing names VLMC, PST, CTW,... for compression applications. SCOT
modeling and its stationary distribution study was the subject of our preceding publication
(IP, No.3, 2014). We estimated SCOT parameters and tested homogeneity of data strings using
additive functions of SCOT trajectories in IP, No.4, 2013. Here we justify properties of the
homogeneity test statistic introduced there and for finding active inputs of sparse systems with
correlated noise.

KEYWORDS: variable length Markov chain, stochastic context Tree, asymptotic normality, addi-
tive functions of SCOT trajectories, large deviations.

1. INTRODUCTION

Stochastic COntext Tree (abbreviated as SCOT) is m-Markov Chain (m-MC) with every state of
a string independent of the symbols in its more remote past than the context of length determined
by the preceding symbols of this state. SCOT has also appeared in other fields under somewhat
confusing names VLMC, PST, CTW,... for compression applications. Apparently the first SCOT
Statistical Likelihood comparison application [1] to non-stationary Bioinformatics data seems inad-
equate. Both asymptotic normality (AN) of additive functions are studied first for ergodic finite
alphabet m-MC trajectories. We discuss then what improvements can be obtained for the particular
case of sparse SCOT models. Our apparently new results for m-MC follow in straightforward way
from those for 1-MC (further called MC). AN for MC is known under appropriate conditions since
S.N. Bernstein’s works around a century ago and continued in numerous publications. For readers
convenience, we refer mostly to the popular comprehensive review [8] available online. We discuss
in some detail only Large Deviations (LD) for a particular case of additive functions in discrimina-
tion between two composite hypotheses as applied to Separate Testing of Inputs in search of active
inputs of a sparse system with stationary noise, where error probability under activeness is fixed,
while the null hypothesis error should be as small as possible similarly to [5], [4]. More general MC
LD results known for almost half a century are surveyed e.g. in [10].

1.1. m-MC reduction to MC on Am

An m-MC {Xn} with a finite state space (alphabet) A can be regarded as 1-MC

{Yn = (Xn, Xn+1, . . . , Xn+m−1)}

with alphabet as the space of m-grams Am. Namely:
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Fig. 1. The simplest stochastic context tree (Model 1).

P (Yn+1|Yn) = P (Xn+m|Yn), if Xn+1, . . . , Xn+m−1 coincide in both sides, and 0 otherwise.

This induced MC on Am is not necessarily ergodic for ergodic m-MC. A simple counterexample
follows in section 1.3.

1.2. Simplest SCOT example in Fig.1

– contexts {0}, {01}, {11}

– transition probabilities P (x0 = 1) given preceding contexts are respectively 1/2, 1/4, 3/4, as
displayed above.

1.3. Counterexample

Consider binary 2-MC with alphabet {0, 1} and transition probability 1/2 from {0, 1} or {1, 1} to
{0} and {1}, transition probability 1 from {0, 0} and {1, 0} to {1}. It is ergodic, but the induced
MC on 2-grams has transient state {0, 0}.

Although we showed counterexample to availability of SCOT reduction to MC on the space of
contexts in [7], this reduction seems to be generally valid as shown by two following examples
neither of which satisfies the sufficient condition of [7]. Thus reduction possibility to MC and its
ergodicity are either validated or assumed when appropriate.

1.4. ‘Comb’ Model Dm

Binary Context Tree Dm repeats n times consequently the splitting of the right hand side of the
Tree on Fig.1. It has contexts (0), (01), (011), ..., (01m−1), (1m) and admits reduction to 1-MC for
every m. Let us assign all root probabilities of {0} and {1} given every context as 1/2.

Then SCOT is ergodic, the stationary distribution {qi} for this 1-MC is (1/2, 1/4, . . . , (1/2)m−1,
(1/2)m, (1/2)m), and entropy rate

ER = −
∑
i∈A

∑
j∈A

qipij log pij

is log 2 for all m.

1.5. Some more SCOT models

Ergodic and non ergodic ladder caricatures of the ‘Galileo inertia law with friction’ were analyzed
in [7]. The motion of Brownian particle hitting heavy objects at random ‘Spike’ times is described
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by another SCOT — Spike model which is defined in two steps. The first step is to assign randomly
the increments of the Random walk to regular ones with Probability 1 − 2/N , and (with 2/N
probability) to spikes. The second step is specifying standard increment distribution for regular
increments and SCOT model with increments of magnitude 0, or ±

√
N to spikes. Here we sketch

the functional convergence proof of the Spike model to a martingale — mixture of the Brownian
motion and a symmetric pair of ± Poisson processes.

The family XN
n =

∑n
i=1 ri of Spike models is in few words a reflected Random Walk on large interval

[−l, l], l > N3/2. Regular part of XN
n has increments ±1 and reflects one step from the boundary

next time it hits it. Very rare (probability 2/N) random interruptions by spikes at random Spike
time moments n have magnitudes 0 or ±

√
N depending on whether XN

n = XN
n−1 (this event can

happen only after very unlikely reflection of a spike from the boundary), or XN
n > XN

n−1, or the
opposite inequality holds. More formally, XN

n =
∑n

i=1 ri, ri in a regular part is an equally likely
sequence of independent identically distributed (IID) ±1, i = 1, . . . , inside (−l, l), while irregular
part is a SCOT model specified above.

1.6. Continuous time limit

Let the increments of time/space be respectively 1/N, 1/
√
N instead of 1. Introduce wN (t) =

N−1/2XN
bNtc (summation until the integer part bNtc of Nt). We study the weak convergence of

wN (t) as N →∞.

Inside (−l, l) conditionally on no spike at time k + 1

E(Xk+1 −Xk) = 0,

Var(XN
k+1 −XN

k )) = (1− 2/N)/N.

Let τk be the k-th spike time. Obviously, τk − τk−1 are IID, independent of σ-algebra spanned by
(xj , j < k − 2) converging to the exponential distribution with mean 2.

Theorem 1. In the limit we get a weak convergence of wN (t) to the Wiener process w(t) in between
independent of w(t) compound Poisson spikes process of equally likely magnitudes ±1:

P (τ > t) = exp (−t/2),

τ and {xt}, t < τ, are independent.

Proof sketch follows in a straightforward way along the lines of the familiar proof of Random Walk
weak convergence to the Wiener process, including

– establishing convergence of the Finite Dimensional Distributions (FDD) from the convergence
of their multivariate characteristic functions,

– verifying the Kolmogorov Uniform Continuity (KUM) of trajectories criterion in between spikes
by checking that

|wN (t+ h)− wN (t)|4 ≤ const|h|2,

– applying the Prokhorov theorem to the tight family of distributions of XN
n trajectories.

Denote the events: {±(k + 1)} = {Xk − Xk−1 = ±1}. If a spike happens at time k + 1, then
Xk+1 − Xk|{±(k)} = ±

√
N . As N → ∞, this dependence of the preceding event Xk − Xk−1

becomes negligible, and the sign of the spike becomes independent of the limiting w(t).
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1.7. ‘Thorny’ THa,b SCOT model

Our next model is similar to the Spike model, only rare random time moments of spikes ±aN b with
similar dependence of spikes magnitude on the past take place with probability N−2b, 0 < b < 1/8.
In the same limiting situation of time intervals 1/N and steps 1/

√
N , the KUM criterion is valid

with similar parameters, thus trajectories of the limiting Ta,b model are continuous.

Let the martingale sequence wN (t) be as above. Then Eri = 0, V ar[wN (t)] = Nt[(a2N2b−1)N−2b+
(1−N−2b)]→ a2+1. The equality of summands preceding a spike can be neglected. The covariance
of wN (t) converges to that of

√
a2 + 1w(t) in a similar way. Thus this model gives larger volatil-

ity without noticeable drift in the limit to continuous t. The weak FDD convergence to that of√
a2 + 1w(t) is valid since the Martingale version of the Lindeberg condition holds, see [12]. Thus

we proved the following statement.

Proposition. wN (t) converges weakly to
√
a2 + 1w(t).

It looks promising to experiment with fitting discrete time financial data as THa,b-model with
variable parameter a estimated as trigonometric series of some order to describe smooth volatility
changes.

2. ASYMPTOTIC NORMALITY FOR ADDITIVE FUNCTIONS OF m-MC TRAJECTORIES

Basically, our further limit theorems will be derived for finite m-MC by reducing them to the
well-known case of MC on m-grams.

Rates of convergence in these theorems depend on the alphabet size which is significantly lower for
sparse SCOT then for general m-MC.

The main steps of our AN straightforward derivation for ergodic m-MC as corollary of that in [8]
are:

– Given an ergodic m-MC {Xi} with finite alphabet A, denote the induced 1-MC on m-grams (see
our Introduction) as {Yi} . We assume that MC {Yi} is ergodic which does not generally follows
from ergodicity of XN

– This 1-MC {YN} is a Harris invariant (see e.g. [8], chapter 17) with respect to a probability
distribution.

Let g be a Borel function on R.

– Define f(Yi) := f(Xi, Xi−1, . . . , Xi−m+1) =
∑m−1

k=0 g(Xi−k).

– Define f̄N := (1/N)
∑N

i=1 f(Yi), ḡN := (1/N)
∑N

i=1 g(Xi).

– If π is the stationary distribution and Eπ|f2| <∞, then the ergodic theorem ([8], section 17.3)
guarantees that f̄N → Eπf with probability 1 as N → ∞, and the central limit theorem holds
for f̄N ([8], section 17.4):

√
N(f̄N − Eπf)⇒ N(0, f2π) weakly, where σf2π <∞ is the variance of f with respect to π.

– (1/
√
N

∑N
i=1 f(Yi)− Eπf)⇒ N(0, σf2π) weakly,

– (1/
√
N

∑
( i = 1)N

∑m−1
k=0 g(Xi−k)− Eπf)⇒ N(0, σf2π) weakly,

–
√
N(mḡN (X)− Eπf)⇒ N(0, σf2π) weakly.
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– The joint convergence of the sample mean and sample variance to independent respectively
Normal and χ2 distributions is established for ergodic finite MC similarly.

– A sparse ergodic SCOT AN convergence rate under fixed context size is generally better than
for the full m-MC. As far as we know, the case of proportional sample and MC alphabet sizes
is not yet studied.

– Above results justify t-distribution of our homogeneity test statistic based on studentized aver-
ages of SCOT log-likelihoods introduced in section 2.2 .

2.1. Asymptotic expansion for additive functions

In [3] the first terms of asymptotic expansion under Cramer-type conditions are:

P (N−1/2(
N∑
i=1

f(xi) ≤ x)) = Φσ(x) + φσ(x)q(x)N−1/2 +O(N−1).

Here φ and Φ are PDF and CDF of the central Normal RV with StD σ, q are expressed in terms
of the Hermite polynomial.

Malinovsky finds explicit expression for the polynomial q(x).

This result can be generalized for m-MC by the method displayed above. We believe that the
coefficient q(x) for sparse SCOT is substantially less than that for general m-MC.

2.2. Nonparametric Homogeneity test

We estimate the SCOT of the large stationary ergodic ‘training’ string T . Then, using the SCOT of
T we first find the loglikelihood LQ(k) of query slices Qk and second, of strings Sk simulated from
the training distribution of the same size as Qk, k = 1, . . . ,K, (for constructing simulated strings,
see algorithm in [2]).

We then find log-likelihoods LQ(k) of Qk, LS(k) of Sk using the derived probability model of the
training string and the average D̄ of their difference D.

Next, due to asymptotic normality of log-likelihood increments, we can compute the usual empirical
variance V of D̄ and the t-statistic t as the ratio D̄/

√
V with K − 1 degrees of freedom (DF). We

find K∗ from the condition that t(K∗) is maximal. Then, the p-value of homogeneity is evaluated
for the t-distribution with K∗ − 1 DF.

3. EXPONENTIAL TAILS FOR LOG-LIKELIHOOD FUNCTIONS

Introduce diversion (cross entropy) D(P1||P0) = E1 log(P1/P0) and consider first goodness of fit
tests of P0 vs. P1 for IID sample of size N .

3.1. ‘Stein’ lemma for LRT between two known SCOT distributions

(Proved first for IID case by H. Cramer in 1938).

If D(P1||P0) ≥ λ and any 0 < ε < 1, then the error probabilities of Likelihood Ratio Test (LRT)
satisfy simultaneously

P0(L0 − L1 > Nλ) ≤ 2−Nλ
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and
lim
N→∞

P1(L0 − L1 > Nλ)) ≥ 1− ε > 0.

No other test has both error probabilities less in order of magnitude.

3.2. Nonparametric version of the ‘Stein’ lemma

Generate an artificial N -sequence zN independent of yN and distributed as P0 and denote by L0

its loglikelihood given the SCOT model of the training string.

L is the query log-likelihood given the SCOT model of the training string.

Also assume that the joint distribution of S slices of size N converge to their product distribution
in Probability.

Theorem 2. Suppose P1, P0 are SCOT, D(P1||P0) > λ and we reject homogeneity, if the ‘conditional
version of the Likelihood Ratio’ test T = L − L0 > λ. Then the same error probability asymptotic
as for LRT in the ‘Stein’ lemma is valid for this test.

Proof sketch. Under negligible brakes and independent slices, their probabilities multiply. To trans-
parently outline our ideas (with some abuse of notation) replace the condition under summation
sign to a similar one for the whole query string: instead of P0(T

′ > 0) =
∑

y,z:L−L0>λ
P0(y)P0(z),

we write the condition under the summation as L−L0 > Nλ which is approximated in Probability
under P0 by LN (y)− |z| > Nλ.

Thus
P0(T

′ > 0) ≤
∑
z

∑
y: P0(y)≤2−Nλ−|z|

P0(y)P0(z) ≤ 2−Nλ
∑
z

2−|z| = 2−Nλ

by the Kraft inequality. We refer to [11] for an accurate completion of our proof in a similar
situation.

Informally again,

lim
N→∞

P1(T
′ > 0) = lim

N→∞
P1(N

−1(|y| − |z|) > λ) = D(P1||P0) + ε, ε > 0.

|y|/N is in Probability P1 around − logP0(y) = E1(− log(P0(y))) + r, |z|/N is in Probability P0

around − logP0(z) = hN0 + r′. As in the Consistency proof, all the principal deterministic terms
drop out, and we are left with the condition r < ε+ r′ which probability converges to 1 since both
r, r′ shrink to zero in the product (y, z)-Probability as N →∞.

4. APPLICATION TO THE STI ANALYSIS UNDER COLORED NOISE

Suppose that we can assign an arbitrary t-tuple of binary inputs x := (x(j), j ∈ [t]), [t] := {1, . . . , t},
and measure the noisy output Z in a measurable space Z such that P (z|y) is its conditional distri-
bution given ‘intermediate output’ y = g(x(A)) with a finite-valued function g(·), and P (z|x(A)) is
their superposition (Multi Access Channel (MAC)), where x(A) is an s-tuple of of ‘Active Inputs’
(as in [5]). Conversely, every MAC can be decomposed uniquely into such a superposition. We omit
obvious generalization to q-ary inputs.

The Mean Error probability (MEP) γ > 0 is the probability of a test T based on a sequence of
measurements z ∈ ZN to misidentify s-tuple A over the direct product of uniform prior for A and
noise distribution of z.
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It is well-known that for known MAC P (z|x(A)), the Maximum Likelihood (ML)-decision minimizes
the MEP for any design. It generalizes the Brute Force analysis of noiseless data for the case of
known MAC distribution. If MAC is unknown, a universal nonparametric test of computational
complexity O(t log t) for IID noise and a random design is I ([5]).

The universal STI decision chooses maximal values of the I for a-th input and output, a = 1, . . . , t.
I for IID noise is the Empirical Shannon Information (ESI):

I(τNN (A)) =
∑

x(a)∈B|A|

∑
z∈ZN

τ(x(a), z) log(τ(z|x(a))/τ(z)).

Let us now consider ‘Colored’ noise. Given arbitrary intermediate vector–output y, the sequence
z’s conditional distribution is that of a stationary ergodic SCOT random string taking values from
a finite alphabet ZN .

The STI-test for colored noise is defined as follows:

Denote

U = B × Z,

and consider for a given j = 1, . . . , N two N -sequences with letters from U :

uj
N := (xj(i), z(i)), i = 1 . . . , N,

and

vNj := (xj(i)(×)z(i)), i = 1 . . . , N,

taken from the original and generated product-distributions, digitize them into binary sequences
UM
j ,V

M
j of appropriate length and evaluate the SCOT homogeneity statistic (see further) of the

product P0 and original distributions P1 = P j1 . The SCOT trained loglikelihoods of these bi-variate
strings are logP (VM ) = LM — the main inference tool about P0.

Consider a query binary sequence UM distributed as P1 and test whether the homogeneity hypoth-
esis P0 = P1 contradicts the data or not. Let us partition yM into several slices Ui, i = 1, . . . , S, of
identical length N divided by ‘brakes’ of length 2m which are sufficient to ensure independence of
slices for m-MC. Introduce strings Ci = (VM ,Ui). Define Li — statistic and L = average of all Li.
Similarly, L0 = average of all L0i with Ui replaced with independent P0- distributed slices of the
same length. Finally, homogeneity statistic is R̄ = L−L0. The R̄ test is shown in our Theorem 2 to
have the same exponential tail under P0 as the asymptotically optimal Likelihood Ratio test, if the
error probability under alternative is arbitrarily small but positive and fixed which is natural, if s =
const, t → ∞. This fact can be used to prove that the STI test is asymptotically optimal among
all tests of affordable computational complexity O(t log t) based on separate influence comparison
of inputs on the output of the system with stationary noise under a random design.

5. CONCLUSIONS, DISCUSSION AND FUTURE DIRECTIONS

We derive asymptotic normality of additive functions of SCOT trajectories to apply for verifying
the t-distribution of the homogeneity test statistic applied in [7] for many real data case studies.
We prove the optimality of exponential tails of our homogeneity test and apply it for showing
asymptotic optimality of our nonparametric STI test applicable for searching active inputs of
a system with colored noise. We introduce several new SCOT models and study the functional
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limit theorems under ‘continuous time’ conditions. These results suggest experimenting with semi-
parametric trigonometric regression of the ‘Thorny’ model for modeling financial time series with
regularly varying volatility for comparison with the well-known GARCH approach.

Acknowledgement P. Grosu and Prof. I. Tsitovich generously aided us in the final technical prepa-
ration of this paper (and of our previous papers published in IP), V. Rotar’s clarification helped
proving our Proposition.
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