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Abstract—This paper continues Separate Testing Inputs vs. Linear Programming relaxation.
We study Response Surface Methodology in its decision stage on whether linear model should
be replaced with a higher order polynomial model both under sparsity and its absence. Opti-
mal properties of adding repeated measurements in the central point of the Complete Factorial
Design under preliminary information on identical signs of quadratic coefficients is established
under sparsity. Next, we study maximin designs which maximize the minimal power of discrim-
ination under normality and a fixed norm of higher order coefficients.
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1. INTRODUCTION

Our preceding publication [10] outlines the dramatic history of the sparsity assumption ap-
plication to the Response Surface Methodology [12], proves the asymptotic optimality of certain
estimates of factorial models obtained from the random sample of the Complete Factorial Ex-
periment under sparsity, small noise and rising dimension of the factorial model. The two-step
estimates mentioned above use the Separate Testing of Effects for finding active ones followed by
Least Squares estimation (LSE) in the reduced model consisting only of active effects. Finally, the
Separate Testing of Effects chooses as active those effects that have the maximal Empirical Shan-
non Information with the output (see [10]). Our Section 2 examines similar and different properties
of the estimation, testing and design procedures for the extended second order model including
all quadratic terms. Sections 3–6 describe various generalizations of our setting to higher order
regression and alternative operability regions.

A performance simulation of our procedures will be carried out later due to temporary unavail-
ability of our [10] coauthors.

2. DISCRIMINATION BETWEEN THE FULL FIRST AND SECOND ORDER MODELS

Let us introduce design ε at support points x(1), . . . , x(n) with nonnegative weights p1, . . . , pn —
frequencies of total number N of independent measurements in support points, and a row-vector of
outputs-responses η(θ) = (η(x(1), θ), . . . , η(x(n), θ))T , where η should be multivariate polinomial in
x ∈ Rd with coefficients formiin parameter θ ∈ Rk, T is a transposition sign. The measurements’
aim is finding a maximum of η(θ). Approximating an unknown response function η(θ) in the
whole region by a high-order polynomial is considered inappropriate since the groundbreaking
Box and Wilson paper [1]. This is due to an excessive amount of experiments required for getting
usually highly correlated and poorly interpretable parameter estimates of complex models. Instead,
estimation in a part of the whole region of interest — operability region by a low-order polynomial
is recommended.
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A sequential experimental strategy of several stages (which we refine a bit in Section 2.2) is
introduced in [12]. During the first stage, the response surface is locally fitted as multilinear one
yielding an estimates of its gradient and consequent shifting operability regions for carrying out a
steepest improvement of a local response model until a stationary region is reached.

Then the second stage of experimentation is initiated to fit the full second order model for
the response inside the stationary region for estimating the sensitivity of the response to small
parameter variation. Inadequacy of the linear approximation signals about the necessity to the
above change of the fitting strategy. For testing adequacy, [1] recommends the complementing the
Complete Factorial Design (CFD(d)) used for fitting first order model with several central points
to enable a reliable estimate for the sum of parameters describing quadratic terms of the response
approximation.

This convenient and intuitive recommendation has its drawback: when the above sum of param-
eters vanishes or is small, the experiments fail to detect inadequacy even if some of the quadratic
parameters are large.

Thus, more reliable designs are appropriate for this aim having a guaranteed power of detecting
arbitrary quadratic deviation from the multilinear model, if a saddle-type local behavior of the
response cannot be excluded beforehand, see Section 3.

Now, we formulate our problem more accurately.

Let the row-vector of measurements y = (y1, y2, . . . , yn)
T have the Normal distribution N(η(θ),

σ2diag(p−1
1 , . . . , p−1

n )). Let η be well approximated by an algebraic or trigonometric polynomial of
degree d, but probably, a polynomial of degree d−k will suffice. It seems reasonable at first to place
measurements so as to test the hypothesis about the polynomial degree obtained for subsequent
optimal estimation of the polynomial coefficients.

We shall test the hypothesis with the help of the F -test in view of its optimal properties [5].
The F -test is the ratio:

p-weighted sum of squares of deviations of the predicted responses from the total mean m∫
(η̂(x, θ)−m))2dε

over the residual sum of squares (which estimates the identical experimental variance σ2). Its
simplified version χ2 is used, if σ2 is known beforehand. The power of the F - and χ2-tests is an
increasing function of the non-centrality parameter ∆ which depends on design ε and the vector
θ(1) of coefficients of monomials of degrees from d− k + 1 to d:

σ2∆(ε, θ(1)) = θT(1) D
−1
1 (ε) θ(1), (1)

where D1(ε) denotes the diagonal block of a covariance matrix D of the LSE for θ restricted to
parameters θ(1) (see [6, 7]).

We use also an alternative expression:

∆(ε, θ(1)) = σ−2

∫
δ2(x, ε⋆, θ(1)), (∗)

where

δ2(x, ε⋆, θ(1)) = min
θ̃(1)=0

∫
(η(x, θ)− η(x, θ̃))2dε =

∫
(η(x, θ)− η0(x, ε, θ))

2dε,

and the minimum is attained on the function η0(x, ε, θ) in the previous equality.

The normalized matrix D1 rather than conventional expression ND1 enables getting rid of
parameter N and of the integer effects. Thus, we can consider the convex closed set of arbitrary
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probability measures upon X as the closure of discrete designs facilitating optimization over designs
and apply classical theory of convex sets. Discussion of these notions including representation of
arbitrary information matrix D−1 as that for discrete design with a support in ≤ A(A+1)/2 points,
where A is the total number of parameters, see e.g. in [6].

When the adequacy of a multilinear model is tested, we choose as alternative the significance
of at least one component of θ(1). Choosing a certain norm ||θ(1)|| of vector θ(1), a design is called
maximin, if it maximizes inf

θ(1)∈Θ
∆(ε, θ(1)), where Θ = {θ(1) : ||θ(1)|| = 1}.

2.1. Maximin designs on multi-cube for testing second order model

In this section, maximin designs are studied, when X is an n-dimensional cube: |xi| ≤ 1, i =
1, 2, . . . , n, η(x, θ) is a multivariate polynomial of degree d, d = 1 or 2, ||θ(1)||2 is the sum of
squares of the components of θ(1).

Now, we obtain some bounds for maximin designs.

The Frobenius formula ([6]) gives

D−1
1 = M1 −M10M

−1
0 M01, (2)

where blocks of D−1 corresponding to the model of smaller order, and cross-parts of D−1 have
subscripts respectively 0, 01 or 10.

Lemma 2.1.1. If ε is a maximin design, then ε̄ =
∫
uεdλ(u) is also maximin, where λ(u) is the

uniform measure on the group {u} = U of all coordinate reshuffles and reflections.

Proof. As is well known (see, e.g. [6]) D−1
1 (ε̄) −

∫
D−1

1 (uε)dλ(u) is non-negatively definite, but
we obviously have D−1

1 (uε) = D−1
1 (ε) for all U. Thus, θT(1)D

−1
1 (ε̃)θ(1) ≥ θT(1)D

−1
1 (ε)θ(1) for all ||θ(1)||

and, consequently, inf θT(1)D
−1
1 (ε̄)θ(1) ≥ inf θT(1)D

−1
1 (ε)θ(1). Thus the statement of the lemma fol-

lows.

For any symmetric design ε, its matrix D−1
1 contains only three entries

a =

∫
x2dε, b =

∫
x4dε, c =

∫
x2y2dε,

where x, y are arbitrary different coordinates of multivariate argument. We deduce from (1) for any
symmetric design:

Lemma 2.1.2.
D−1

1 = diag(B, cId(d−1)/2).

Here B = (c− a2)ldl
T
d , ld is the column vector consisting of d ones and Ir is the identity matrix of

order r.

Lemma 2.1.3. ld is an eigenvector of B and D−1
1 with eigenvalue ρ1 = b + (d − 1)c − da2,

rank(B − dId) = 1 implies that ρ2 = b− c is an eigenvalue of multiplicity d− 1. Finally, ρ3 = c is
an eigenvalue of multiplicity d(d− 1)/2.

Thus,
∆ = min{c, b− c, b+ (d− 1)c− da2}.

Obviously, a ≥ b for our case implying inequality

∆ ≤ ρ1 ≤ b+ (d− 1)c− db2.

Putting b = 1/2 + µ, c = 1/4 + ν, we infer:

∆ ≤ min{ν, µ− ν, (d− 1)(ν − µ)− dµ2} ≤ 1/4.
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2.2. The Box’s family of designs

The mixture ε∗ = 1/2(CPD(d) + δ(0)), where δ(0) is atom at 0, has a = b = c = 1/2 and does
not allow unbiased estimates of θii. Nevertheless, the following result holds:

Theorem 2.2. The minimal non-centrality parameter ∆(ε∗, θ(1)) over all θ(1) : ||θ(1)|| = 1, is
maximal over all designs ε, when all coefficients of squares θii have the same sign.

Here we use normalization ||θ||2 =
∑

θ2ii + 2
∑

i<j θ
2
ij = 1.

Proof. For the mixture εp of CFD and the central point with frequency p, we have a = b = c = p
and λ1 = d(p − p2) ≤ d/4, λ2 = 0, λ3 = p. The optimal p is 1/2. If all θii have the same sign and∑

θ2ii = 1, then under p = 1/2 we have

σ2δ2(ε∗) = (d−1
∑

θii)
2d/4 + 2−1

∑
i<j

θij2 ≥ 4−1
∑
i

θ2ii = 1/4,

∆(ε∗) = (1/4)(
∑

θii)
2 +

∑
i<j

θ2ij ≥ 1/4.

Thus, ∆(ε∗) ≥ 1/4 and we will say: ε∗ is a quasi-maximin design.

If the quadratic response η(·) has a maximum, then D−1
1 is non-negative definite and quadratic

form 1Ti D
−1
1 1i ≥ 0, i = 1, . . . , d, where 1i is the column-vector of i-indicator. Thus, all coefficients of

squares θii have the same sign, and ∆(ε∗) is not worse than the maximin noncentrality parameter
for any design.

2.3. Intuitive sequential procedure

Omitting discussion of tricky multi-decision problems as in [6, 7], we formulate an intuitive
strategy of testing adequacy of a linear model.

(i) After an initial sample from CFD(d) of size sufficient for finding all active main (linear effects)
and initial estimation of the variance of observations, we increase size of this sampling to en-
able estimation of active interactions. If any active interaction is found, the null hypothesis of
linear relationship is rejected. (Notice, that the increment in sample size depends only of spar-
sity parameter, since the term involving log t of upper bound has the unity coefficient due to
incommensurability assumption on the active parameters).

(ii) If the null hypothesis has not been rejected in the first series [i], we start adding the central
point to the design and after reaching p = 1/2, sample from ε0. When the frequency of central
points reaches value 1/2 ≥ p > 0, all entries a, b, c in D−1

1 are p and we can evaluate the non-
centrality ∆ and corresponding power for sequential decision on stopping measurements and
deciding about adequacy of the linear model.

(iii) If the null hypothesis is rejected, our design is to be enlarged to form the so-called central
composite design or another D-optimal design for fitting the non-linear model efficiently.

Remark. An additional fundamental advantage of using εp is conditional independence of all
main effects, interactions and the sum of squares S, when measured at CFD(d) (S is identically
equal to one). The main effects, interactions and S are dependent because equality to 0 of one of
them implies the same for all the rest.

We find in Sections 3–6 (following preprint [9]) maximin designs for the following cases:

(1) X is an n-dimensional cube: |xi| ≤ 1, i = 1, 2, . . . , n, η(x, θ) is an algebraic polynomial of
arbitrary degree d, ||θ(1)||2 is the sum of squares of the components of θ(1) which are coefficients
of a polynomial of degree d+ 1.
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(2) X is an n-dimensional ball:
n∑

i=1

x2i ≤ 1, η(x, θ) is an algebraic polynomial of the degree d, k = 1

or 2, ||θ(1)|| is invariant under rotations.

(3) X is an n-dimensional torus: |ti| ≤ π, the points (t1, t2, . . . , tm−1,±π, tm+1, . . . , tn) are consid-
ered as identical for all m,x1, . . . , xm−1, xm+1, xn.

η(x, θ) =
∑

0<|ν|≤d

[aν cos (ν
T t) + bν sin (νT t)] +

a0√
2

(3)

where ν = (ν1, . . . , νn)
T , 0 ≤ νi ≤ d, |ν| =

∑
νi, (t1, . . . , tn)

T , ||θ(1)|| is the sum of squares of
the components of θ(1) and the vector θ(1) includes simultaneously aν , bν for a certain set A of
indices ν, 0 < ν ≤ d.

3. ONE-DIMENSIONAL REGRESSION

The results of Section 3, some of which are of independent interest, will be applied in the
multidimensional case. We begin with trigonometric regression to which the algebraic case will be
reduced. The principal role is played by the following simple result on the trigonometric function
orthogonality which is easily obtained by summing up the geometric series

∑N
r=1 e

irx.

Lemma 3.1.

(1)
∑N

r=1 sin(m2πr/N) ≡ 0, all m,N being integers;
(2)

N∑
r=1

cos(m2πr/N) =

{
0, m/N is not an integer;

N, m/N is an integer.

eN is the uniform design on the circle {[−π, π], ±π are identified}, giving equal weights 1
N to

all equidistant points ti, and in particular, eoN is such design eN , that one of the points of eoN is 0.

With the help of known trigonometric formulas, lemma 3.2. follows from lemma 3.1.

Lemma 3.2.

(1) System of functions:
√
2 sin rt,

√
2 cos rt, r ≤ d is orthonormal on eN when N > 2d.

(2) System of functions: 1,
√
2 sin rt,

√
2 r ≤ d,

√
2 cos rt, r < d, cos dt, is orthonormal on e02d.

Maximin designs for multidimensional trigonometric regression will be constructed in section 6.
Here we study the even trigonometric regression:

η(t, θ) =
d∑

r=0

θr cos rt, 0 ≤ t ≤ π.

Introduce design εd with equal weight pr = 1
d at points r π

d , r = 1, 2, . . . , d − 1, and weights
p0 = pd = 1

2d at points 0 and π.

If design εd is reflected across the origin of coordinates and the points ±π are identified, we
obtain design eo2d and, by applying evenness of the cosx and point (2) of lemma 3.2. we get the
proof of:

Lemma 3.3. System of functions 1,
√
2 cos rt, r < d, cos dt, is orthonormal on εd.

The following theorem is valid:

Theorem 3.1. Design εd minimizes Dθ̂d and the non-centrality parameter ∆(ε, θd), when testing
the hypothesis: θd = 0.
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Proof. Since ∆ =
θ2d
Dθ̂d

, both statements of the theorem are equivalent. Let us prove the second

one. We have

∆(εd, θd) = min
θ̃0,...,θ̃d−1

∫
(η(t, θ)−

d−1∑
r=0

θ̃r cos rt)2dεd

= min
θ̃0,...,θ̃d−1

∫
(

d−1∑
r=0

(θr − θ̃r)
2 cos2 rt+ θ2d cos2 dt) dεd

due to orthogonality of the system cos rt, r ≤ d on εd. The minimum is attained, when θ̃r = θr,
it equals θ̃2d; besides,

δ2(t, εd) = θ̃2d cos
2 dt

is maximal in each point of the εd support enabling application of theorem A.2.1 establishing the
optimality of the design.

Let us go over to the algebraic regression

η(x, θ) =
d∑

r=0

θrx
r, |x| ≤ 1. (4)

Using transformation x = cos t of the independent variable and plugging in the expression

cosr t = 21−r cos rt+

⌊ r
2
⌋∑

u=1

au cos (r − 2u)t, (5)

where au are certain constants, yields

η(x, θ) = θd 21−d cos dt+ θd−1 22−d cos (d− 1)t+

d−2∑
r=0

br cos rt, (6)

where br are certain linear combinations of the parameters θr, r ≤ d. We remind that polynomial
Tr(x) which is uniquely defined by the condition

Tr(x) = cos(r arccos x), |x| ≤ 1, (7)

is called the Chebyshev’s polynomial. Thus,

η(x, θ) = θd 21−dTd(x) + θd−1 22−dTd−1(x) +

d−2∑
r=0

brTr(x). (8)

Introducing design ζd with equal weights pr = 1
d at points cos rπ

d , r = 1, . . . , d − 1 and
p0 = pd = 1

2d at points ±1 obtained from εd by transformation x = cos t, we paraphrase the result
of lemma 3.2 as follows:

Lemma 3.3. The system of polynomials
√
2Tr(x), r < d, Td(x) is orthonormal on ζd.

Next is the main result of Section 3

Theorem 3.2.

(i) ζd is a maximin design for testing the hypothesis θ(1) = (θd, θd−1)
T = 0, when ||θ(1)|| = θ2d +

aθ2d−1, 0 < a < 2.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 16 № 3 2016



TESTING DEGREE OF MULTIPOLYNOMIAL 253

(ii) ζd minimizes D θ̂d.

Proof of (ii) immediately follows from equation (7) and theorem 3.1.

(This fact was proved in [6] in different way). Going over to the proof of the first statement and
taking into account equation (7) we get:

∆(θ(1), ζd) ≥ min
b0,...,bd−2

∫
(21−dθdTd(x) + 22−dθd−1Td−1(x) +

∑
(br − b̃r)Tr(x))

2dζd.

Using lemma 3.3 yields ∆ ≥ 22−2dθ2d + 23−2dθ2d−1 ≥ 22−2d(θ2r + aθ2d−1) = 22−2d, the equality is
attained, iff θd−1 = 0.

In this case, the function δ2(x, ζ, d) = 22−2dT 2
d (x) attains its maximum 22−2dT 2

d (x) at all points
of the supp ζd according to theorem A2.1. For θ̃(1) = (1, 0), we have

∆(θ̃(1), ε) ≤ ∆(θ̃(1), ζd) ≤ ∆(θ(1), ζd).

Consequently, according to equation (4), the pair θ̃(1), ζd is a saddle pair, and ζd is a maximin
design.

Remark. For hypothesis θd = 0, the normalization condition is equivalent to the following:

max
|x|≤1

|η(x, θ)− E η̂d−1(x, ε)| ≥ 21−d. (9)

An interesting problem is the corresponding reformulation of our normalization θ2d + aθ2d−1 = 1
in terms of systematic deviation of η̂d−2(x) from η(x, θ).

4. MULTIDIMENSIONAL ALGEBRAIC REGRESSION ON A CUBE

Let X be an n-dimensional cube: |xi| ≤ 1, i = 1, . . . , n, θ(1) be the column-vector of the
coefficients of monomials of degrees from d− k+1 to d of algebraic polynomial η(x, θ) and ||θ(1)||
is an Euclidean norm of θ(1).

The direct product of designs ε1 and ε2 on the sets X1 and X2 is the direct product of the
corresponding probability measures on set X1 ×X2.

Denote as xν , θν , |ν| respectively the monomial

n∏
i=1

xνii , corresponding coefficient and

n∑
i=1

νi.

Denote the vector θ(1) with a single non-zero component θν = 1 as δν ; specifically, δd,r corresponds

to monomial xdi .

Theorem 4.1.

(1) The direct product ζnd of designs ζd of Section 3 is a maximin design for testing hypothesis
θ(1) = 0, k equals either 1 or 2;

(2) matrix D1(ζ
n
d ) is diagonal, the variance dν = Dθ̂ν of the LSE θ̂ν for θν , |ν| > d− k, is

dν = δ2

22−2d, if ν = δd,r for certain r∏
να

21−2να , otherwise;

(3) Specifically, when k = 1, d = 2, D1(ζ
n
2 ) = 4δ2I, ∆(ζn2 , θ(1)) = (2δ)−2, Dθ̂0 = n+ 1.

The determinant of the sub-matrix D(ζn2 ) corresponding to θ0 and θαα, α = 1, . . . , n, is minimal.
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A generalization of the theorem for normalization
∑
|ν|=d

θ2(ν) + a
∑

|ν|=d−1

θ2(ν) = 1, 0 < a < 2,

is straightforward.

Proof of Theorem 4.1 is a natural generalization of the proof of theorem 3.2.2. Using orthogo-
nality of the products of Chebyshev’s polynomials of various variables on ζnd , we find that (ζnd , δd,r)
is a saddle pair; item (3) is directly verified.

Denote πν(x) =
n∏

i=1

Tνi(xi), ν+ is the number of νi > 0 in vector ν.

Lemma 4.1. When |µ| ≤ d, |ν| ≤ d:

∫
πµ(x)πν(x)dζ

n
d =


0, if µ ̸= ν

1, if µ = ν = δd,r, r = 1, . . . , n

2−ν+ , if µ = ν ̸= δd,r.

Proof. The left hand side is equal to

n∏
i=1

∫
Tµi(xi)Tνi(xi)dζ

n
d (xi), ζ

n
d is the direct product of ζd.

Hence, this lemma immediately follows from lemma 3.2.3.

For definiteness, we shall restrict ourselves to a more complicated case k = 2.

Lemma 4.2. When d− 1 ≤ |ν| ≤ d, δ(x, ζnd , δν) = aνπν(x), aν =
∏
νi>0

21−νi .

Proof. According to equation (5), it is necessary to prove that

min
ηd−2

∫
(xν − ηd−2(x))

2dζnd = a2ν

∫
π2
νdζ

n
d . (10)

Transforming multipliers xµi
i in accordance with equation (9) and using the fact that degrees

of the monomials in expansion of Tn(x) have the equal evenness, we reduce the first sub-integral
expression to the following form :

xν − ηd−2(x) =
∏
νi>0

(21−νiTνi(xi)) +
∑

|µ|≤d−2

bµπµ(x)

with certain constants bµ. Hence, according to lemma 4.1, the statement follows from equation (11)
and lemma 4.1 with help of equation (2).

Let us prove the diagonality of matrix D1(ζ
n
d ). For this purpose, we prove

Lemma 4.3. ∆(ζnd , θ(1)) =
∑

θ2νa
2
ν

∫
π2
νdζ

n
d .

Proof. Using linear dependence η̃(x, ζnd , θ) and lemma 4.2, we get: δ(x, ζnd , θ(1)) =
∑

θνaνπν(x).
Further,

∆(ζnd , θ(1)) =

∫
δ2(x, ζnd , θ(1))dζ

n
d

=
∑

θ2νa
2
ν

∫
π2
νdζ

n
d +

∑
µ ̸=ν

aµaν

∫
πµπνdζ

n
d .

The latter sum equals 0 according to lemma 4.1.

From lemmas 4.3 and 4.1, point 2 of theorem 4.1 follows, besides, with any 1 ≤ r ≤ n,

∆(ζnd , δd,r) = min
||θ(1)||=1

∆(ζnd , θ(1)). (11)
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The supp ζnd belongs to the set

Ar = {x : δ2(x, ζnd , δd,r) = T 2
r (x) = ∆(ζnd , δd,r)} (12)

for any r.

According to lemma 2.2.1, ζnd maximizes ∆(ε, δd,r) i.e.

∆(ε, δd,r) ≤ ∆(ζnd , δd,r) ≤ ∆(ζnd , θ(1)).

Consequently, (ζnd , δd,r) is a saddle pair, and ζnd a maximin design. The support of ζnd coincides
with ∩n

r=1Ar. It follows that the support of any maximin design belongs to supp ζnd .

5. MULTIDIMENSIONAL ALGEBRAIC REGRESSION ON A BALL.

For the case of d = 2, k = 1, a family of discrete maximin designs was found in [11] on a ball
X = {x :

∑
x2i ≤ 1} for the same norm as in section 4. Its support consists of the vertices of the

inscribed cube, of the central point and of the ‘star’ points at the crossing of the spherical boundary
with the coordinates. Instead of generalizing this result for d > 2, we investigate maximin designs for
a natural case of invariant under all rotations (rotatable) norms ||θ(1)||. More precisely, we demand
that ||θ(1)|| coincides for a polynomial ηd and for ηd(ux), where u is an arbitrary rotation of X.

The examples of such norms are max
x∈X

|ηd(x, θ) − ηd−1(x, µ)|, or
√∫

(ηd(x, θ)− η̃d−1(x, µ))2 dλ,

where λ and µ are certain rotatable measures on X.

The following theorem is true in this general situation.

Theorem 5.1.

(1) The support of any maximin design for testing hypothesis θ(1) = 0 is contained in the spheres∑
x2i = r2i ≤ 1, the unit sphere included (in this formulation, for even d, 1/2 of a sphere is

regarded as the center of the ball).
(2) The mixture of uniform distributions upon these spheres with some weights is a maximin design.

Proof. For rotatable norm ||θ(1)||, uε obtained by the arbitrary rotation of maximin ε, is also
maximin.

Lemma 5.1. If ε is a maximin design, then ε̄ =
∫
uεdλ(u) is also maximin, where λ(u) is the

Haar probability measure on the orthogonal group.

Proof. As is well known (see, e.g. [3]) D−1
1 (ε̃)−

∫
D−1

1 (uε)dλ(u) is non- negatively definite, but
we have D−1

1 (uε) = D−1
1 (ε) for all U. Thus θT(1)D

−1
1 (ε̄)θ(1) ≥ θT(1)D

−1
1 (ε)θ(1) for all ||θ(1)|| and,

consequently inf θT(1)D
−1
1 (ε̄)θ(1) ≥ inf θT(1)D

−1
1 (ε)θ(1). Thus, the statement of the lemma follows.

Maximin design ε̄ is, of course, rotatable. Thus, it follows that the corresponding mixed minimax
strategy in θ is rotatable and, consequently, is defined by certain rotatable measure ν:

θ̄ =

∫
(uθ)dν(θ)).

Function
∫
δ2(x, ε̄, ν(θ)) dν(θ) of lemma 2.2 is, evidently, a function of r2 = ||x||2 only, besides

this function being a polynomial of x of degree 2d, must be a polynomial Pd of r2 of degree d. The
polynomial Pd does not equal a constant, for its coefficient at the degree d cannot be (according
to the definition of δ2) equal to zero. Consequently, the maximum of Pd upon X can be accepted
only upon d

2 spheres and at the origin, if d is even, and on d+1
2 spheres, if d is odd.

Remark 5.1.The orthogonality of basis functions does not imply their independence on the
product design even for the simplest case of basic functions on sphere S1. Here, the Euclidean
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coordinates become functions sinx and cosx on the circumference. Their joint moment generating
function (MGF)E exp(s cosx+sinx)= E exp (u(sin(x+ ϕ)) is easily reduced to E exp (u sinx),
where u = tan−1(s/t). The derivative of E exp (usinx) can be expressed as a special function
Struvel[1, u]/u. This exercise boils down to a conclusion that the joint MGF is not a product of a
function of s and a function of t. Random samples from the uniform distributions on spheres Sd−1

is a sample of independent d-dimensional standard normals divided by the root of sum of their
squares. Thus, statistical simulation of above designs seems feasible.

6. TRIGONOMETRIC REGRESSION ON A TORE.

Testing hypothesis is simpler here than in previous sections.

Theorem 6.1.

(1) For the item (3)-model advertised in introduction to Section 3, the direct product ρn of n
uniform designs eNi depending on the coordinates ti.i = 1, . . . , n, is a maximin design, if
Ni ≥ 2d+ 1, i = 1, . . . , n. In this case

(2) D(ρn) = 2I and

(3) D1(ρ
n) = min

ε
|D1(ε)|.

Proof. Let us prove the second statement.

Lemma 6.1. The system of functions 1,
√
2 sin(νT t),

√
2 cos(νT t) is orthonormal on ρn if

Ni ≥ 2d+ 1, |ν| ≤ d, i = 1, . . . , n.
For definiteness, let us find

2

∫
sin(µT t) sin(νT t) dρn = 2

∫
sin(

∑
µiti) sin(

∑
νiti) Π dεN (ti).

According to lemma 3.2, point (1), the integral along ti is 0, if µi ̸= νi, if µ = ν coordinates
tj , j ̸= i being fixed. Thus, (2) follows. Further on, applying the lemma just proved, we get:∑

[Dâν cos
2(νT t) +Db̂ν sin

2(νT t)] = 2
∑
A

[cos2(νT t) + sin2(νT t)]

is the number of parameters aν , bν , ν ∈ A, i.e. the condition of the truncated D-optimality of the
design ρn (A2.1.4) is fulfilled.

The proof is over.

Remark 6.1.The orthogonality of basis functions does not imply their independence as random
variables on the product design even for simplest one-dimensional case of sinx and cosx.
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A1. UNIQUENESS OF THE INFORMATION MATRIX

As usual in [12], we assume that our design is orthogonal for multilinear model and simplify the
expression of the non-centrality parameter under this assumption. Formula (2) implies that

δ2 = −a2(
∑

θ2ii)− a−1
d∑

k=1

(
∑

i < jθijk)
2 +

∑
k≥m

∑
i≥j

[ijkm],

where [ijk] and [ijkm] are respectively third and fourth moments for such designs.

It follows that

m(ε) ≤ min
i,j

δ2(ε, θi,j) = [iijj]− a−1
∑

k[ijk]
2
,

where θij corresponds to the function η(x) = xixj , i < j. The averaged design ε̄ is symmetric with
m(ε̄, θij) = m(ε) and same a. Taking into account the equality [iijj]ε̄ = ¯[iijj]ε, we conclude that
equality m(ε) = m(ε̄) implies equalities for all k and i < j: we have [iijj] = const and [ijk] = 0.

Now,

m(ε) ≤ δ2(ε, θ̄) = −da2 − a−1d−1
∑

[iii]2ε + d−1
∑

[iiii]ε + 2d−1
∑
i<j

[iijj]ε,

where θ̄ corresponds to the function d−1
∑d

i=1 x
2
i .

Thus, [iii]ε = 0 and [iiii]ε = b for all i = 1, . . . , d. As a result, all moments of ε and [ε̄ coincide
up to the fourth order meaning that their information matrices coincide.
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A2. EQUIVALENCE THEOREMS AND ITERATIVE SEARCH FOR AN OPTIMAL DESIGN

The method used in the main body of our paper was a direct finding of a saddle point. In
more general cases only an iterative construction of maximin designs is feasible. The equivalence
theorems [5,7,15] for a number of optimality criteria might be useful. Let us give the corresponding
formulations:

Theorem A2.1. Design ε⋆ with non-degenerate information matrix is ϕ-optimal for

1. ϕ(D) = θT(1)D
−1
1 θ(1) = ∆(ε, θ(1)) (maximization of the non-centrality parameter, for a specified

subvector of parameters θ(1);
2. ϕ(D) = min

Θ
∆(ε, θ(1)) (maximin design);

3. ϕ(D) = Dpp = Dθ̂p (the best estimate for the parameter θp, used in Section 2);
4. ϕ(D) = |D1|, where D1 is a submatrix of D represented by a subvector θ(1) of the parameters

and ||D1| its determinant (truncated D-optimality, used in section 6);
5. ϕ(D) =

∫
∆(ε, θ(1)) dµ(θ(1)) (Bayesian maximization of the weighted non-centrality parame-

ter), dµ is a probability measure on a certain compact Θ;

if respectively:

1. max
x∈X

δ2(x, ε⋆, θ(1)) = ∆(ε⋆, θ(1)),

δ2(x, ε⋆, θ(1)) = min
θ̃(1)=0

∫
(η(x, θ) − η(x, θ̃))2dε =

∫
(η(x, θ) − η0(x, ε, θ))

2dε, where on the

function η0(x, ε, θ) the minimum is reached in the previous equality;
2. max

x∈X
(max{δ2(x, ε⋆, θ(1)) : ∆(ε⋆, θ(1)) = min

θ̃(1)∈Θ
∆(ε⋆, θ̃(1)), θ(1) ∈ Θ}) = min

Θ
∆(ε⋆, θ̃(1))

3. max
x∈X

(
p∑

α=1

Dαp(ε
⋆)fα(x)

)
= Dpp(ε

⋆),

4. max
x∈X

fT (x)D̃(ε⋆)f(x) = dim θ(1),

5. max
x∈X

∫
δ2(x, ε⋆, θ(1))dµ(θ(1)) = ∆(ε⋆, θ(1))dµ(θ(1))

The support supp ε⋆ of the measure is contained in the set, where maximum on X is reached in
the previous equalities.

The proof of items (1, 3, 4) is described in [6,7]. Here, we shall outline the proof of items (2,5).
The convexity of all functions ϕ as functions of ε follows from the convexity of the matrix D−1

1 (e.g.
see [6, 7]). The functional ϕ of item [5] is a differentiable function of elements of D in the vicinity
of non-degenerate information matrix of ε⋆, there exists a continuous derivative in any direction:

∂ϕ(εα)

∂α
|α=0 = min

θ(1)∈R(ε0)

∂∆(εα, θ(1))

∂α

where εα = αε0 + (1 − α)ε1, R(ε0) = {θ(1) : ||θ(1)|| = 1, min
||θ̃(1)||=1

∆(ε0, θ̃(1)) = ∆(ε0, θ(1))}

(see [4], p.233). Thus, we obtain:
∂ϕ(εα)
∂α |α=0 = min

||θ(1)||=1
∆(ε0, θ(1))−max{δ2(x, ε, θ(1)) : ||θ(1)|| = 1, ∆(ε0, θ(1)) = min

||θ̃(1)||=1
∆(ε0, θ̃(1))}.

This concludes the proof. Similar arguments for another maximin model see in [5].

The Bayesian criterion function ϕ in (5) is differentiable and

∂ϕ(εα)

∂α
|α=0 =

∫
(∆(ε0, θ(1))−

∫
δ2(x, ε, θ)dε1)dµ(θ(1)),
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since because of Θ1 compactness, we can differentiate under the integral sign (the integral of a
derivative converges uniformly). This concludes the proof. Note that item (2) can be used for
constructing numerical iterative search procedure of maximin designs.

A3. MAXIMIN DESIGNS AND GAME THEORY

Our problem can naturally be interpreted in terms of the game theory, considering that one player
chooses a design maximizing ∆(ε0, θ(1)) and the other one chooses θ(1), ||θ(1)|| = 1, minimizing
∆(ε0, θ(1)).
The discussion of basic notions of the game theory can be found for example in [14]. We are
especially interested in the notion of a saddle pair of strategies which in our case are maximin
design and the distribution ν upon the set Θ1 for which:∫

∆(ε⋆, θ(1))dν(θ(1)) = max
ε

min
µ(Θ)=1

∫
∆(ε, θ(1))dµ

= min
µ(Θ)=1

max
ε

∫
∆(ε, θ(1))dµ. (13)

In our case, the optimal strategy in ε can be chosen ”pure”and not mixed (the distribution
ν(θ(1)) as in the case of strategy in θ(1)) for the following reasons: It is more convenient to assume
the first player choosing information matrix M(ε) of design [3]. In this case the pay-off ∆ becomes
strictly convex function of M(ε) which is continuous in both arguments running over compact
subsets of finite dimensional spaces, while the set M = {M(ε)} of the strategies of the first player
is convex by applying (1). It follows that the optimal strategy for the first player is the pure strategy
M⋆ presenting M⋆ = M(ε⋆), we obtain the maximin design. Besides, note that to test whether
ε⋆, ν(θ(1)) is a saddle pair, is in our case sufficient to test that:∫

∆(ε, θ(1))dν(θ(1)) ≤
∫

∆(ε⋆, θ(1))dν(θ(1)) ≤ ∆(ε⋆, θ(1)). (14)
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