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Abstract—The Baum–Welsh recurrent ML estimation of HMM parameters has been success-
fully applied to speech recognition. Its application to Genome modeling is questionable since
assigning independence and equal probabilities to emissions from the same part of genome is a
rough approximation. We develop a hybrid slow HMM switching model with SCOT emissions
which might be a more realistic model for Genome, analysis of combined authorship of liter-
ary works, seismological data or financial time series with piecewise volatility. Our combined
online and offline segmentation stage estimates time regions with constant HMM states using
homogeneity test for SCOT emissions strings. This is made recurrently in parallel on a cluster
of computers.
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1. INTRODUCTION

The popularity of a compression tool – VLMC based on SCOT fitting has been increasing rapidly
since a fitting algorithm was proved to be consistent for stationary mixing sequences in [13] and
used for compression. A somewhat confusing name VLMC is also used for a video editor.

Stochastic COntext Tree (abbreviated as SCOT) ism-Markov Chain (m-MC) with every state of
a string independent of the symbols in its more remote past than the context of length determined
by the preceding symbols of this state. The parallel super-fast training of a sparse SCOT model and
asymptotically optimal inference about the SCOT model including the nonparametric homogeneity
test are described in [10].

Markov regime switching models remain enormously popular in speech recognition, economics,
finance, etc. A concise review is in [6]. Nonparametric segmentation in switching models without
probability assignment of jump moments is in [1] and many consequent papers by these authors. The
Hidden Markov Model (HMM) is the simplest regime switching model with all regimes consisting
of random variables called emissions. Emissions are independent (mutually and of HMM) with
distribution depending on the current HMM state. The fast Baum-Welsh recurrent retrospective
ML estimation of HMM parameters has been successfully applied to speech recognition [12]. Its
application to Genome modeling [4, 17] is questionable since assigning independence and equal
probabilities to emissions from the same HMM state (which is the same part of Genome in this
model) is a rough simplification. Markov switching models generalize HMM by considering more
complex parametric regimes admitting fast parameter estimation ([2, 6]).

We develop semi-parametric hybrid slow HMM with SCOT emissions (SCOT-HMM) which
might be a more realistic model for Genome, analysis of combined authorship of literary works,
seismological data or financial time series with piecewise volatility. We show in [10,11] that regular
stationary sequences are well-SCOT-approximated. Thus, SCOT-HMM models are close to non-
parametric ones.
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Our retrospective segmentation stage estimates time regions with constant HMM states using
homogeneity test for SCOT emission strings. This is made fast recurrently in parallel on a cluster
of computers.

It is necessary to distinguish our HMM-SCOT model from a completely different VLMCHMM
approach introduced in [3].

A more formal SCOT description follows.

An m-MC {Xn} with a finite state space (alphabet) A can be regarded as 1-MC

{Yn = (Xn, Xn+1, . . . , Xn+m−1)}

with alphabet as the space of m-grams Am. Namely:

P (Yn+1|Yn) = P (Xn+m|Yn), if Xn+1, . . . , Xn+m−1 coincide in both sides, and 0 otherwise.

This induced MC on Am is not necessarily ergodic for ergodic m-MC. A simple counterexample
follows.

1.1. Counterexample

Consider binary 2-MC with alphabet {0, 1} and transition probability 1/2 from {0, 1} or {1, 1}
to {0} and {1}, transition probability 1 from {0, 0} and {1, 0} to {1}. It is ergodic, but the induced
MC on 2-grams has transient state {0, 0}.

The context to am1 is its final part of minimal length l(am1 ) such that the conditional distributions

P (Xm+1|x, amm−l) do not depend on x up to joint error probability < ε. This statement is described
by simultaneous validity of obvious A × (A − 1) double inequalities. Not occurring m-grams are
ignored. To streamline introduction, we assume that there are no such m-grams.

A Sparse SCOT over some alphabet A is a very special case of m-MC, where m is the maximal
length of contexts. For a given string x−0 := (x−m, . . . , x−1, x0), the context to a current state x0
(root) given preceding m-gram is

C
(
x−0

)
= (x−k, . . . , x−1) := x−1

−k, k ≤ m : (1)

the end part of the preceding m-gram of minimal length such that the conditional probability

P
(
x0|x−r

−1

)
≡ P

(
x0|x−k

−1

)
, ∀r > k; k =

∣∣C (
x−0

)∣∣ (2)

is called the length of context C
(
x−0

)
.

Note, that symbols of contexts are written in the natural order starting from the oldest one.
The same number |A| of edges goes from any non-terminal node of the context tree.

The memory spectrum M = m2m
1 is the 2m-vector of context lengths along 2m paths from the

root to the past. Averaging context lengths over their SCOT stationary distribution gives a sparsity
indicator—the mean prediction length (MPL). SCOT is called sparse if MPL=o(m). The median,
or another quantile collection, or other functions of M over the stationary distribution can be also
used for defining sparsity. Notice that for n < m, n-step prediction can use states on distance from
m to 1 from the root in contrast to prediction in traditional theory of stationary processes.

The SCOT stationary distribution is evaluated in [14] either analytically or iteratively using
reduction of SCOT to a 1-MC on the space of contexts [14,18].

Assumptions. A sparse SCOT is always assumed to be ergodic and its maximal context length
M (horizon) is fixed, the number B of HMM states is fixed while the sample size N is growing.

If we are given a long string with a vast collection of m-grams, then the probability context
length distributions can be replaced with their corresponding consistent frequencies. This allows
the sparse m-MC training dealt with in [5, 7, 10,13].
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For completeness, we display in section 2 a sketch of the Context algorithm consistency from [5]
admitting horizon O(logN) and the sample size N → ∞. A popular software [7] implementing the
Context algorithm of [13] assumes a fixed horizon as N → ∞. We sketch simplifications in proving
consistency under this assumption.

2. CONSISTENCY OF SCOT TRAINING

P (y, xM , ..., x1) is the joint empirical distribution of (y = x0, xM , ..., x1).

For a node A = xi, ..., x1, P (y|zA) = P (y|A)/P (y|zA) = P (y, zA)/
∑

b∈A P (b, zA) is the condi-
tional empirical distribution of zA given A, where zA denotes the string (z, xi, ..., x1).

The Empirical Shannon Information (ESI)

IA =
∑
y,z

P (y|zA) log[P (y|zA)/P (y|A)], (3)

T (A) = N(A)IA, (4)

where N(A) = ♯ of node A in the string.

Test Tε of [13] chooses as contexts such nodes A that T (A) < ε.

Consistency proofs of SCOT contexts estimation of [13] and his followers has admitted possibly
growing as logN maximal context size (horizon) for sample size N → ∞.

To prove that the estimate l̂ of the length of context l(A) = l
(
C(x−0 )

)
is the true one, they upper

bound the probability of the opposite event by

P (l̂) ̸= l(A)|N(A) > C1N/
√

logN)P (N(A) > C1N/
√

logN) + P (∪α∈AN(α ≤ C1N/
√

logN)).

Rissanen proves that the first term is bounded by C2 logN exp (−C3

√
N).

The second term goes to 0 due to the ergodicity of the time series concluding the proof.

2.1. Consistency under Fixed Horizon

To simplify the proof and sketch the rate of consistency and conditional accuracy of prediction
distributions assignment in the contexts, we use more practical assumption of fixed maximal context
size M = const as N → ∞. We assume that the minimal cross entropy between the prediction
distributions at nodes of the memory tree immediately preceding the context A or following context
A exceed ε + δ, δ > 0. Then, fulfilling inequality T (A) < ε is a large deviation with exponentially
small in N probability. The Bonferroni bound means multiplication by a fixed under N → ∞
multiplier and does not affect the exponential decay of the error probability. Conditional to the
correct decision about a context, the prediction distribution in the root given the context has a
degenerate multivariate normal distribution estimated by P (y,A)/

∑
b∈A P (b, A).

Remark. Assuming a finite horizon M can be interpreted as follows: we replace the original
m-MC with another one. Its conditional probabilities are replaced with averages of the original
ones over their stationary distributions with respect to the tails of length exceeding M . Due to
exponential memory loss of regular stationary processes, this approximation seems appropriate.

3. PRELUDE: DETERMINISTIC HMM

To make our ideas more transparent, we first display them in section 3 for toy examples of
deterministic HMM. To warm up, consider first a much simpler than HMM case of B alternating
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intervals of length L where states are respectively ±1 and the beginning of intervals and maxi-
mal context sizes are known. The minimal absolute entropy difference between SCOT stationary
distributions is assumed exceeding λ > 0.

Combining all intervals corresponding to the same states into long strings Ti, i = ±1, we can
train each of their SCOT model according to [10].

Remark. To initialize SCOT sub-string, we use in this and following sections a uniformly dis-
tributed sample of the maximal length of their contexts which is presumed to be known beforehand.
The cardinality of the sample is reasonably small since SCOT is assumed sparse. For L large enough,
this initialization does not affect consistency of SCOT parameters estimation.

3.1. Quasi HMM

i. Known SCOT.

We consider first the same model with B = 1, the beginning of the first interval is shifted right
to unknown value ∆0 which is uniformly distributed over [0, L] and the second interval is shifted
accordingly, its end fills the interval [0,∆0]. Thus, our assignment is on circumference [0, 2L]. The
known SCOT(±1) structures are assigned respectively to [∆0, L+∆0] and the remainder.

Introduce stationary log-likelihoods li = logP (xi|xi−1
− ) and entropy of SCOT((±1)): h((±1)) =

limM→∞M−1E
(∑M

1 li

)
.

To reduce analysis to the previous trivial case, we estimate ∆0. For each 0 < ∆ < L we compute
the normalized log-likelihood difference R/L of part [∆,∆+L] vs the opposite part [∆+L,∆+2L]
on circumference [0, 2L]. Finally, ∆̂ which maximizes over ∆ the maximal over ±1 value of |R(∆)|
is an estimate for the change point ∆0. If ∆̂ = 0 or L, then each of them is an equivalent estimate.
For large L and ∆ = ∆0, E(R/L) is the entropy difference H+1 − H−1 > 0 between SCOT(±1).
Otherwise, it is the entropy difference between their mixtures.

Proposition. ∆̂ is consistent with variance O(L−1), if |E(R(∆0))/L| > 0. Graphically, E|R(∆)|
is represented by two intervals with slopes ±(H+1−H−1) which attain maximal values H+1 > H−1

around the point ∆̂ of their local maximum.

Remark. If instead of condition |E(R(∆0))/L| > 0 we use contiguous alternative SCOT distri-
butions (which might be appropriate for literary texts of two authors), then a slightly modified
procedure should be used, see [8, 10].

Proof of Proposition. Unless ∆ = ∆0, the log-likelihoods are mixtures and R/L are weighted dif-
ferences of the SCOT(±1) log-likelihoods. Due to the ergodic theorem ([10]), their averages converge
to their expectations which implies consistency of ∆̂. The maximal values of E|R(∆)| around ∆0 are
H+1 > H−1, the first right and left differentials are proportional to ±(H+1 −H−1). Therefore, the
asymptotic variances of the limiting one-sided Normal distributions are V ar±1lL

−1(H+1−H−1)
−2.

Thus, we estimate the change point ∆0 with standard deviation O(L−1).

ii. Unknown SCOT.

If SCOT(±1) are unknown, we divide 0, L into, say, 5 equidistant slices and choose two adjacent
slices with minimal t-value of the homogeneity test [10] which we use for training SCOT denoted as
SCOT(+1). We test homogeneity of the mirror slices in [L, 2L] and after homogeneity confirmation
train SCOT denoted as SCOT(−1). If homogeneity of mirror slices is not confirmed, we repeat the
whole procedure anew until success.

Next, we estimate the change point ∆0 similarly to item i. If ∆̂ turns out to belong to adjacent
homogeneous slices we started SCOT training with, we repeat the whole procedure anew. Another
approach is to apply online-offline sequence of change-point detections introduced in section 4.iii.
which seems inferior for this simple case.
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4. HMM WITH TWO STATES

i. Known HMM and unknown SCOT. For HMM with two states ±1 and positive entropy differ-
ence between SCOT(±1) distributions like in the preceding Proposition, we must estimate SCOT
structures during HMM state constancy. For simplicity, we assume the transition probability ma-
trix of HMM to be the I(1− 2/n) + (1/n)11T, where I,1 are respectively the identity matrix and
the 2-column of ones. Thus, the HMM jumps to the alternative state after spending asymptotically
exponentially distributed time with mean n in each state. Suppose for simplicity that we know the
initial state (1).

The corresponding SCOT(1) structure is estimated following [10] during sufficiently small initial
period of length αn, 0 < α < 1, which is also the starting interval of sequential detection of the
first jump.

ii. Sequential detection of the change point.

The online detection of the first jump moment τ combines an initial online estimation and
consequent offline update following section 3.1.i.

Numerous references deal with online change point detection: control charts, CUSUM, [1], etc.
A recent survey is [16]. Here we sketch a simple suboptimal approach of [1] postponing optimization
until future publications. Our SCOT log-likelihood process li converges weakly to the Brownian
motion under broad conditions, see [9, 11]. Thus, applying the profound theories of [15] makes
the development of more asymptotically sound online evaluation of τ̂ promising. Notice that our
online change point detection serves for training alternative SCOT. After that it is updated by the
retrospective more accurate estimate of section 3.1.i. Every step of this procedure is verified by
SCOT homogeneity tests.

Denote by Pτ (Eτ ) distributions (expectations) corresponding to strings with change point τ and
by P∞(E∞) strings without change point.

A stopping time τ̂N based on N measurements is the first hitting time of certain set. Introduce
non-negative part y+ of y ∈ R and delay time (τ̂N − τ)+/N .

Consider

YN (k, r) = k−1
r−N+k∑
r−N+1

li − (N − k)−1
r∑

r−N+k+1

li, k = 1, . . . , N − 1, r = N, . . . ,

r,N are running indexes of observations until a change point is detected.

Define for 0 < α < 1,

zN (r) = max |YN (k, r)| : αN ≤ k ≤ (1− α)N.

Their stopping time τ̂ is the hitting time of the region zN (r) ≥ c.

Under natural regularity conditions, the following bounds are proved showing consistency of τ̂

lim sup (E[(τ̂ − τ)|τ̂ ≥ τ ]) / logE∞[τ̂ −N ] ≤ const;

E∞(τ̂ −N) ≥ A exp (BN)(1 + o(1)).

The last inequality shows that the Probability of false alarm far from τ is small.

The estimate τ̂ is used as an initial consistent approximation for τ which is updated offline in
the next section.

iii. SCOT(±1) training update and segmentation of the state constancy.
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We train SCOT(−1) during small consequent interval of length αn belonging to the next period
of constant HMM state. Next, we update the estimate offline according to the procedure described
in section 3.1.i. and widen periods of SCOT(±1) constancy omitting only small neighborhoods of
current τ̂ estimates. These are applied for further updating SCOT(±1). This alternating procedure
is repeated in all constancy periods of HMM until convergence.

iv. Unknown HMM parameters estimation.

If it is only known that both time means spent in two states before jump are proportional to
large parameter n, we can estimate all HMM transition probabilities after detecting all jump times.
The marginal HMM distribution is estimated via maximum likelihood applied to the joint jump
moments statistics using obvious delay frequencies. Namely, denoting nij = number of times i is
followed by j, j = ±1, under P (X1 = 1) = 1, the log-likelihood is

l(p) =
∑
ij

nij log pij ,
∑
j

pij ≡ 1,

yields

p̂ij = nij

/∑
j

nij .

Thus, empirical time mean before estimated jump from i to 1− i, i = ±1, serves as an estimate
of mean time spent in i, while transition probabilities are estimated via the last formula.

5. HMM WITH FINITE NUMBER OF STATES

Here we outline training SCOT and the general m states slow HMM model such that all time
means spent in states before jump are proportional to large parameter n. Main steps of training
are similar to the two HMM state case. Online change point detection is used before every jump
to unknown state. It is followed by the SCOT training of the string after jump of length αn where
homogeneity is verified by homogeneity test and by the subsequent ‘straight line cross’ offline change
point update (section 3.1.i.) of the change point preliminary online estimate.

After all change points are safely estimated, parameters of HMM are estimated based on their
multivariate statistics.

6. DISCUSSION, OPEN PROBLEMS AND ACKNOWLEDGMENTS

The training algorithm exposed in present paper relies heavily on repeated application of the
SCOT training and homogeneity test developed by us earlier for a cluster of computers. This
super-fast parallel evaluation makes the whole procedure viable.

Numerical implementation of the procedure on statistically simulated and real world examples
will be exposed in our future publications.

Our next goal is also developing online SCOT training and homogeneity test parallel procedures
for multi-channel online change point detection.
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