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Abstract—We study Design and Analysis of non-linear in parameters smooth Quasilinear Re-
gression Model (abbreviated as Q-model) which admits in every iteration almost the same type
of analysis as linear regression for simultaneous iterative estimation of both the mean and
variance of observations. Q-models are more flexible in applications than Linear models. We
prove local convergence of iterations θs, s ∈ Z, in probability and the asymptotic normality
of θ̂ = lims→∞ θs in iteration procedure called REweighted Algorithm of GAuss-Newton and
illustrate its broad use by many appropriate applications.

KEYWORDS: Gauss-Newton algorithm, iterations, convergence in probability, asymptotic nor-
mality, maximum likelihood, exponential families,

1. INTRODUCTION: MAIN RESULTS AND APPLICATIONS

Design and Analysis in Linear models is a favorite in Statistics with the mean of unknown
uni/multivariate distribution estimated from empirical data while the covariances are known up to
a scalar multiplier. The Least Squares (LSE) method of Gauss estimates the mean of multivariate
distribution and a scalar multiplier of Covariance from empirical data. Algebraic formulas for
estimates and their statistical characteristics make LSE most transparent and attractive.

A general regression of a parametric distribution family Pθ is the best approximation of the
response via explanatory variables in square risk sense. Usually, the covariance D(θ) of this pre-
diction depends on parameters θ of the distribution and the regression cannot be described by a
Linear model. If neither theory, nor the data amount do not allow use of distribution Pθ, but second
moments are available, then the nonparametric approach is justified which we start describing.

We survey more broadly applicable and flexible Quasilinear Multivariate Regression Model Q
that has been implicitly used in various applications since 1950’s. It is based on the following basic
assumptions:

(i) The mean and Covariance matrices Di(θ) of independent observations yi ∈ Em,m ∈ Z, are
smooth functions of the same unknown parameter θ ∈ Θ ⊂ Ep.

(ii) Identifiability: Parameter θ is uniquely determined by vector (µ1(θ), . . . , µN (θ)).

We call this model Q-Model. Non-smooth in θ models (say, change point and range of distribution
estimation)) require alternative types of analysis.

Remark. Condition (ii) distinguishes Q-models from the Variance Components (VC) model (fit-
ted in our section 12 using quadratic in y updates), where covariance coefficients VC are separate
parameters apart from the mean.

Algebraic formulas for estimates of θ in Q-model are not available. We prove local convergence
in probability of iterations θs, s ∈ Z and asymptotic normality (AN) of θ̂ = lims→∞ θs in iteration
procedure which generalizes the classical Gauss-Newton algorithm in the following aspect: the
difference θs+1 − θs is the weighted LSE of linearized at θs model and plugged in weights are given
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by the formula Vi = D−1
i (θs). Let us call this algorithm Reweighted Algorithm of Gauss-Newton,

or REAGAN.

Remark. The Gauss modification of the Newton Algorithm was invented for simplifying the
latter in analyzing random nonlinear regression data by replacing numerically cumbersome inverse
of the Hessian with the inverse of the easily computable mean Hessian. An additional advantage
is local convergence of iterations which is not guaranteed even for deterministic applications (say√
·) of the Newton algorithm.

In section 5, we prove: if initial approximation (starting point) θ0 is a consistent estimate of θ∗,
then estimate θ̂ is an AN estimate of θ∗ with asymptotic covariance (

√
N(∂F (θ∗)TD(θ∗)(∂F (θ∗))−1.

Milder conditions for initial guess θ̂0 are established in section 5 by arguments of the type two
embeddings of Banach spaces.

Previously, in section 4, we prove the asymptotic normality (AN) and convergence of moments√
N(θV −θ∗), where θV is the LSE with a fixed weight function V (x). This implies

√
N -consistency

of θV ; we prove convergence of moments
√
N(θ1− θ∗) in section 5. In section 6, we prove the Local

Asymptotic Minimaxity (LAM) of REAGAN for Q-models in the class of linear in y updates to
an initial guess.

In section 10, we use the following observation of Generalized Linear models [37]: estimate θ̂
satisfies maximum likelihood equation, if multivariate distribution of measurements belongs to a
Regular Exponential Family and prove the minimaxity of LAM-risk of REAGAN with respect to
any statistics and distribution families with the same means µi(θ) and Covθ[yi] ≤ Di(θ).

In section 9, we introduce a polynomial generalization: F k-model. In particular, F 2 is a natural
generalization of the Variance Component model (VCm). We prove: REAGAN has the LAM prop-
erty with respect to the class of polynomial functions in yi of degree k for the extended F-model of
larger dimension introduced there.

Next section 12 deals with a particular case of F k-model: one-way Gaussian Variance Compo-
nents. We prove the Local Asymptotic Normality of estimates and establish unusual properties of
optimal design.

A collection of other applied examples reduced to Q-models is reviewed in sections 11, 13–15,
including:

1. a multivariate regression with unknown constant covariance matrix of measurements (section
11);

2. multisample mixture estimation (section 13);

We only sketch several other applications:

3. the popular M-estimation can be also represented as a particular case of REAGAN algorithm.

4. density parameter estimation from stratified sample (section 14);

5. the first approximation for regression estimates with small random error in controlled variables
parameters (section 15).

Rather distant interesting application of REAGAN for Q-models is in spectral domain of Gaus-
sian multivariate time series [19] which is beyond the scope of this survey as well as REAGAN use
for normalization of RNA microarrays via orthogonal regression [34].

Non-linear regression models were popular publication topics until mid-eighties of twentieth
century. Strangely enough, a very special case of Q-models called Generalized Linear models [37]
was more popular than broader Q-models. Later, non-parametric models replaced them as the main
focus of statistical community. Interest to non-linear parametric models seems to get more ground
now. In particular, design and analysis for very many Q-models with their application to clinical
trials are studied in [8], where some of our results are reproduced.
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2. NOTATION AND ABBREVIATIONS

.
=, ∃ mean equality by definition and ‘there exists’,

s.t. abbreviates ‘such that’,

w.r.t. means ‘with respect to’;

Rk (Ek) is the k-dimensional (Euclidean) linear vector space (with norm ∥·∥);
N, (Z) are the sets of natural numbers (integers),

⌈x⌉ = min{z ∈ Z : z ≥ x};
IA is the indicator of the set A,

Int[A] is the interior of an open set A;

Bε is a ball with center θ∗ ∈ Ep and radius ε for a fixed θ∗ ∈ Int[A];

For F : Rk ×Rm → R, ∆F(x, θ, θ∗) = F(x, θ)− F(x, θ∗);

F ∗ is the value of the function F (θ) at θ = θ∗;

If F (x, θ) is continuously differentiable and depends also on chance (random), then the Lagrange
form of its first order Taylor expansion is preferable to the conventional form since it enables proof
that ∆F(x, θ, θ∗) is measurable, integrable, etc.

∆F(θ, θ∗) =

∫ 1

0
(∂F(θ + λ(θ∗ − θ))/∂θ)dλ · (θ − θ∗). (1)

The corresponding Lagrange form of the second order Taylor expansion (12.4.3) is used in section
12 for statistical analysis of quadratic approximations.

detA, AT , trA are determinant, transpose and trace of matrix A; V ec[W(xN1 )] := (WT (x1), . . . ,
WT (xN ))T ; A− is the generalized Moore-Penrose inverse of matrix A; I is the identity matrix; A ≥ B
(A > B), if A − B is symmetric and nonnegative (positive) definite; diag{λn1} is a block-diagonal
matrix with blocks λ1, . . . , λn; 1k ∈ Ek = (1, . . . , 1)T ;

Borel subsets AN of Rk hold in probability, if their lower measure P (AN ) → 1 as N → ∞,
i.e. ∃ a sequence of open sets BmN ⊆ AN s.t. ; P (BmN ) → 1; ξN ⇒ N(a,D) denotes the weak
convergence of random vector ξN to the Normal distribution N(a,D) with mean a and covariance
matrix D.

2.1. Assumptions

Let Px,θ be a family of distributions on Borel subsets of Rm or on finite set of elements of
Rm,m ∈ N, which depend on known xi ∈ X and θ ∈ Θ ⊂ Ep, p ∈ N, where Θ ⊂ Ep is a compact
set.

We observe a sequence of independent random variables

y = y(N) = V ec{yN1 }, yi = y
(N)
i ∈ Em,

P (yi ∈ B) = Pxi,θ∗(B) for some unknown θ∗ ∈ IntΘ and any Borel sets B ⊂ Rm.

Eθ[ξ] and Covθ[ξ] are expectation and covariance matrix of random vector ξ with distribution
Pθ

We use the following assumptions:

(A1.a): Mean Eθ[yi] = µi(θ) = µ(xi, θ), where µ(x, θ) is a bounded smooth function such that

(A1.b): φ(x, θ) = ∂µ(x, θ)/∂θ is a continuous bounded (m× p)-matrix function on X ×Θ

(A1.c): The same requirements for ∂φ/∂θi, i = 1, . . . , p
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(A2): There exists a covariance matrix Covθ[yi] = D(xi, θ) such that ∂D(x, θ)/∂θ is a smooth
bounded function on X ×Θ with

inf
X×Θ

detD(x, θ) > 0 (2)

(A3.a): Distributions εN on X: εN (x) = N−1
∑N

i=1 Ix(xi) weakly converge to a probability measure
ε and

(A3.b): ∫
φT (x, θ)D−1(x, θ)φ(x, θ)dε(x)

.
= m(θ) (3)

satisfies condition
inf
Θ

detm(θ) > 0. (4)

(A3.c): ∀ θ, θ′ ∈ Θ, θ ̸= θ′ and continuous bounded weight function V (x) > 0 such that

0 < inf detV (x) ≤ sup detV (x) <∞

we have that

RV (θ, θ
′)
.
=

∫
∆µT (x, θ, θ′)V (x)∆µ(x, θ, θ′)dε(x) > 0. (5)

Remark 1. (1) Our results are easily generalized for a bounded number of blocks of measurements
Bi and N → ∞ in each of them, (A1)-(A3) hold for the same Θ and some mi, Di, µi, εN(i).

(2) Simultaneous measurable w.r.t. x diagonalization of two weight matrices V (x) and V ′(x) of
the quadratic form (5) yields: if (A3.c) holds for some family of matrices V (x), then it holds for all
families of matrices with the same properties as in (A3.c).

3. AUXILLARY RESULTS

The following development follows the functional approach to asymptotic statistics originated
in the proof of limiting distribution for the Kolmogorov (1933) goodness of fit non-parametric test.

Theorems and formulas preceding section 12 are enumerated without index of section. Theorem
1 is a correct replacement of erroneous section 4.3.8 in [47] (its author was apparently unaware of
the functional approach). Section 4.3.8 implied unjustifiably mild regularity conditions for many
convergence theorems in his fundamental textbook [47] and in numerous other books and papers
that cited [47] (see e.g.[5, 6]).

The error was caused by replacing P (supA(θ) < ε) with supP (A(θ) < ε) for a family A(θ) of
random variables. The counterexamples to the statement of [47], section 4.3.8, are in [30].

Theorem 1. Suppose a sequence of measurable functions gN (x, θ, y) is uniformly continuous on
X × Θ × Em and converges uniformly to g(x, θ, y) on X × Θ a.e. with respect to y-distribution,
and ∀x, θ ∈ X ×Θ |gN (x, θ, y)| ≤ ψ(y), where M = supX Ex,θ∗ψ

2(y) < ∞. Let GN (x, θ) =
Ex,θ∗gN (x, θ, y) be continuous on X × Θ uniformly w.r.t. N and assumption (A3.a) is satisfied.
Then for

SN (θ) =
1

N

N∑
i=1

gN (xi, θ, yi)

the following is true:

(1.a) SN (θ) → Ḡ(θ)
.
=
∫
Gdε (G(x, θ) = limN→∞GN (x, θ)) in probability uniformly in θ ∈ Θ.

(1.b) If gN does not depend on y, then ‘in probability’ in (1.a) can be omitted.
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(2) limr→0 limN→∞P (supBr

∥∥SN (θ)− Ḡ(θ)
∥∥ > κ) = 0 ∀ κ > 0.

(3) If θ̂N → θ∗ in probability, then SN (θ̂N ) → Ḡ(θ∗) in probability.

Proof. We have
sup
X×Θ

|GN (x, θ)| ≤ L sup
X
Ex,θ∗ψ(y) <∞;

SN (θ)− Ḡ(θ) =

∫
ξN (x, θ, y)dεN +

∫
GN (dεN − dε) +

∫
(GN −G)dε,

where ξN (xi, θ, yi) = gN (xi, θ, yi)−GN (xi, θ).

From (A3.a) and Prokhorov’s Theorem, we have:

∀ λ > 0 ∃ compact Kλ ⊂ X s. t. sup
N∈N

εN (Kλ) > 1− λ

8L
.

The uniform continuity of GN on Kλ ×Θ implies that

∃ κ = κ(λ) s.t. sup{
∣∣∆GN (x, θ, θ′)

∣∣ : θ, θ′ ∈ Θ,
∥∥θ − θ′

∥∥ < κ} < λ

8
∀ N ∈ N.

We have for ∀N > N∗(λ):

sup
Θ

∣∣∣∣∫ (GN −G)dε

∣∣∣∣ < λ

4
, sup

Aκ

∣∣∣∣∫ GN (dεN − dε)

∣∣∣∣ < λ

4
,

where Aκ is a finite κ-net on Θ. Then

sup
Θ

∣∣∣∣∫ GNdεN − Ḡ

∣∣∣∣ < λ for N > N∗(λ),

i.e. (1.b) follows. Further,

sup
Θ
P (

∣∣∣∣∫ ξNdεN

∣∣∣∣ ≥ ν) ≤
supΘE(

∫
ξNdεN )2

ν2
≤ M

Nν2
→ 0 as N → ∞,

which implies (1.a).

If for ∀ λ > 0, ωN (γ, y, λ) is the continuity modulus of ξN (x, θ, y) on the compact Kλ/2 × Θ,
then

P (sup
Bγ

∣∣∣∣∫ ∆ξN (x, θ, θ∗, y)dεN

∣∣∣∣ > κ

2
) ≤ 2

E supBγ

∣∣∫ ∆ξNdεN
∣∣

κ
,

E sup
Bγ

∣∣∣∣∫ ∆ξNdεN

∣∣∣∣ ≤ ∫
Kλ/2

E sup
Bγ

|∆ξN (x, θ, θ∗, y)| dεN +
λ

3
≤ EωN (γ, y, λ) +

λ

3
< λ,

when γ < γ∗(λ) by the Lebesgue Theorem. This and (1.b) imply (2) and consequently (3).

Remark 2. In the proof of Theorem 1 we used only the null correlation between y1, . . . , yN .

Corollary 1. Assuming (A1)-(A3) and result (1.b) of Theorem 1, we have:

mN (θ)
.
=

∫
φT (x, θ)D−1(x, θ)φ(x, θ)dεN (x) → m(θ)

uniformly in θ ∈ Θ, and m(θ) is a continuous function of θ.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 18 № 4 2018



266 MALYUTOV

As an example, let us consider a Multinomial model. Let yi be m-vector s. t. its only nonzero
component yij = 1 means that a particle in the ith experiment gets into jth urn, j = 1, . . . ,m.
Then

Covθ[yi] = diag{pm1 (θ)} − p(θ)pT (θ)}, detCovθ[yi] ≡ 0

with pT (θ) = (p1(θ), . . . , pm(θ))T is the vector of probabilities for particles to get into urns satisfying∑
pi(θ) ≡ 1. We can ensure that assumption (2) holds by eliminating the first component of vectors

yi. Instead, to avoid asymmetry and complex calculations, we can get rid of (2) and replace (3)
with ∫

φT (x, θ)D−(x, θ)φ(x, θ)dε(x) = m(θ), (6)

where D−(x, θ) is a continuous bounded on X×Θ Moore-Penrose generalized inverse of D(x, θ) [3]
satisfying (4). For Multinomial Models, basic models of the Analysis of Variance and other cases
where yi’s have constant rank, it is possible to construct continuous generalized inverse of D(x, θ).
In particular, for Multinomial models there is an obvious choice of a generalized inverse

D−(x, θ) = diag{[pm1 ]−1(θ)}

The above choice helps to construct the Q-model-based estimation in our sections 13-14.

4. LSE UNDER A CONSTANT KNOWN COVARIANCE MATRIX

Let us fix a matrix function V (x) > 0 as in (A3.c) and define LSE statistic:

θV
.
= argmin

Θ

∑
δTi (θ)V (xi)δi(θ), δi(θ)

.
= yi − µi(θ). (7)

Assuming (A1.a), (A3.a) and (A3.c), θV is a correctly defined statistic for sufficiently large N
(because the minimum in (7) is unique) and consistent estimator of θ∗. Let us give a simple proof
of asymptotic normality of θV utilizing (A1.c). Let QN (θ) be a sequence of statistics under argmin
sign in (7) considered as random fields of argument θ ∈ Ep. Introduce RN (t)

.
= QN (θ) − QN (θ∗),

where t =
√
N(θ − θ∗). Under assumptions (A3.a,b,c) and additional assumption:

(A4.(r)): for ∀r > p the moment of order r of distribution Px,θ is bounded on X ×Θ

the following Theorem is true.

Theorem 2. Random fields RN (t) with t belonging to some compact set T converge weakly to the
Gaussian Random Field {tTAt− 2tT ξ}, where

A =

∫
φ∗TV φ∗dε,

ξ ∼ N(0, B), B = lim
N→∞

1

N
JDJT , D = diag{D(xN1 , θ)}, J = V ec{φTV (xN1 , θ)}.

Proof. Using (1), we get:
RN (t) = IN (t) + IIN (t),

IN (t)
.
= tT

∫ ∫
dλdµ

1

N

N∑
i=1

φT (xi, θ
∗ + λ

t√
N

)V (xi)φ(xi, θ
∗ + µ

t√
N

),

IIN (t)
.
= −2tT

∫ 1

0

1√
N

N∑
i=1

φT (xi, θ
∗ + λ

t√
N

)V (xi)δ
∗
i dλ.

Theorem 1, item (1.b) implies: expression IN converges uniformly in t ∈ T to tTAt. The Linde-
berg’s condition for integrand in IIN holds uniformly in t ∈ T , which implies that IIN converges
uniformly to the random field −2tT ξ on T .
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Under conditions of Theorem 2, the following Lemma is true.

Lemma 1. There exist constants ρ0, N0, C such that for all N > N0, ρ > ρ0 the following
inequality holds

P{
√
N
∥∥θV − θ∗

∥∥ > ρ} ≤ Cρ−r (8)

This result was proved in [16] for the univariate case of θ ∈ E1 and generalized later by the same
author to the case p ≥ 1. The outline of the proof is as follows. The event in (8) is equivalent to
the event

sup
∥t∥>ρ

(IIN (t)/IN (t)) ≥ 1. (9)

The upper bound of probability in (9) is based, in particular, on a uniform in N bound of
continuity modulus of random fields IN (t) and IIN (t) which, in turn, is obtained using the Whittle
inequality for the moments of linear form of independent random variables [46]. The same bounds
also imply weak compactness of the family of measures corresponding to RN (t).

The associated with random field −2tT ξ probability measure in the space of continuous functions
on T satisfies: measures corresponding to IIN (t) converge weakly to it. The functional argminR(t)
attains the unique value t = A−1ξ with probability converging to 1, when T is extended to Rp.
Taking into account the weak convergence of measures and continuity of the functional argmin (with
its unique value for the random field in the limit), we get the asymptotic normality of

√
N(θV −θ∗)

with parameters (0, A−1BA−1).

Lemma 1 directly implies:

Proposition 1. E[
√
N(θV − θ∗)]u < C <∞ for u ≤ ⌈r − 2⌉ under assumptions of Section 3 and

(A4.(r)). It converges to the moments of the limiting distribution for
√
N(θV − θ∗) as N → ∞.

Let us emphasize that finding global minimum of (7) is in general a complicated computational
task, i.e. construction of effective consistent estimator of θ∗ remains an open problem.

5. REAGAN

LSE (7) for a Q-model withD−1(x, θ) used instead of V (x) is generally not a consistent estimator
contrary to claims in some applied papers.

Theorem (1.1.b) implies that it converges in probability to

argmin
Θ

{
∫
tr[D∗(x)D−1(x, θ)]dε(x) +R∗

D−1(x,θ)(θ)}. (10)

Let us give a definition of locally asymptotically unbiased procedure REAGAN.

Definition 1. Let θs = θs(y) ∈ Θ be an estimator at the sth step of the algorithm and observa-
tions y = y(N). Let us introduce the operator (Rp → Rp)

AN (θ)
.
= (NmN (θ))−1φTD−1(xN1 , θ),

δ(θ) = V ec{δN1 (θ)}, φ(θ) = V ec{φ(xN1 , θ)},

and introduce
θs+1 = Ay(θ

s)
.
= θs +AN (θs)δ(θs). (11)

It is easy to check that operator Ay(θ) and its derivatives Li = ∂Ay(θ)/∂θi, i = 1, . . . , p are
well defined in probability under assumptions of section 3 without assumption (A3.c). An analogue
of stochastic continuity holds for random variable τy(r) = sup1≤i≤p supBr

∥Li∥.
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Lemma 2. For ∀ κ > 0
lim
r→0

lim
N→∞

P (τy(r) > κ) = 0

Proof. Using easily verifiable identities ∂δ(θ)/∂θ = −φ(θ) and

AN (θ)φ(θ) = I, (12)

we obtain:

Li = I + (∂A−1
N /∂θi)δ(θ) +AN (θ)(∂δ(θ)/∂θi) = (13)

= (∂AN (θ)/∂θi)(δ
∗ +∆µ(θ∗, θ)).

Further,

∂m−1
N (θ)∂θi = −m−1

N (θ)(∂mN/∂θi)m
−1
N (θ)

converges to a limit as N → ∞ because of assumption (3) and Theorem (1.1.b). Thus, it is
uniformly bounded and continuous in N > N0. The same is true on X × Θ for the functions
φ, ∂φ/∂θ, V, ∂V/∂θ which are parts of expression Li. Thus, we can apply Theorem (1.2) to (13)
and get the desired result. Let us emphasize that τy(r) is measurable in r which is insured by the
fact that the sup in definition of τ could be taken over rational points because of continuity of Li(θ)
in θ.

The next Lemma uses the independence of random variables y1, . . . , yN .

Lemma 3. Let us denote ρy(θ) = Ay(θ)− θ. Then
√
Nρ∗ ⇒ N(0, [m∗]−1).

Proof. The proof follows from equality ρ∗ =
√
NA∗

Nδ
∗ and the Central Limit Theorem.

Let us point out that assumption (3) of Theorem 1 is not sufficient in our model for asymptotic
normality of

√
Nρ∗ and thus for asymptotic normality of θ̂, θs, s ≥ 1. The next statement

establishes REAGAN convergence under a consistent initial guess for θ∗.

Theorem 3. There exists a random variable θ̂(y) defined in probability s.t.:

(a) events ΓN
r = {y : supθ0∈Br

∥∥∥θs − θ̂(y)
∥∥∥→ 0} hold in probability as r = rN → 0;

(b) more precisely, event ΓN
r occurs, if

τy(r) +
∥ρ∗∥
r

< 1; (14)

(c) the following bound is valid under condition (14):

sup
θ0∈Br

∥∥∥θs − θ̂(y)
∥∥∥ ≤ r

τ sy (r)

(1− τy(r))
;

(d)
√
N(θ̂(y)− θ∗) is bounded in probability, i.e.

lim
K→∞

lim
N→∞

P (
∥∥∥θ̂(y)− θ∗

∥∥∥ > K√
N

) = 0;

(e) θ̂(y) satisfies equation
AN (θ̂)δy(θ̂) = 0. (15)
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Proof. (b) By Lemmas 2 and 3 we have

sup
θ∈Br

∥Ay(θ)− θ∗∥ ≤ sup
Br

∥∥Ay(θ)− A∗
y

∥∥+ ∥∥A∗
y − θ∗

∥∥ ≤

≤ rτy(r) + ∥ρ∗∥ ≤ r

under condition (14), i.e. Contraction Mapping Ψy maps Br into itself. Next we can use the famous
bound from Contraction Mapping Principle

sup
θ0∈Br

∥∥θs − θt
∥∥ ≤ r

τ sy (r)

(1− τy(r))

for ∀t > s ∈ N, which implies convergence of θs for all θ0 ∈ Br to the unique point θ̂(y) under (14);
θ̂(y) is a measurable function of y because θs (11) is a random variable for any θ0. Thus, we obtain
(b) and by taking the limit as t→ ∞ we also get (c). Let us define

TK
N = {y : ∥δ∗∥ ≤ K

√
N,

∥∥∥√Nρ∗∥∥∥ ≤ K}.

Then for ∀ ε > 0, there exists K s. t. limP (TK
N ) > 1 − ε. Then for y ∈ TK

N , condition (14) holds
whenever N > N0, r, N0 are s. t. KU(r) + V (r) ≤ 1

2 (by Lemma 2) and 2K < r
√
N for N > N0.

It is obvious that solution of these two inequalities is r ∈ [ 2K√
N
, r0], where r0(K) is the maximal

solution of the first inequality (the end points of the above interval correspond to results (a) and
(d) respectively). Equality (15) is obtained by taking the limit in (11) and using the fact that
AN (θ)δ(θ) = ρ(θ).

Remark 3. (1) In many previous works on convergence in probability of Gauss-Newton-type
algorithms ([5–7]),”the proof”was essentially based on verification of the condition (similarly to the
erroneous section 4.3.8 in [47]):

sup
Br

limN→∞P{∥∂Ay(θ)/∂θ∥ ≤ α < 1} → 1

with the help of the standard Law of Large Numbers (which is weaker than (14)). The above
condition does not necessarily imply the required condition:

P{y :
∥∥∆Ay(θ

s, θs−1)
∥∥ ≤ α

∥∥θs − θs−1
∥∥ ∀ s ∈ N} → 1.

Moreover, the Law of Large Numbers cannot be applied directly to

∂Ay(θ
s)/∂θ = AN (θs)(δ∗ +∆µ(θ∗, θ)),

because random variable θs depends on δ∗ for s ≥ 1. The last mistake is also typical in deriving
bounds for remainder terms, when proving asymptotic normality in similar works, where Theorem
(1.3) should be applied instead of LLN.

(2) From inequalities for functions gi ∈ Lip(ρ), i = 1, . . . , n, it follows (see Section 7):

sup
Θ

∣∣∣∣∣
n∑

i=1

gi(θ)δ
∗
i

∣∣∣∣∣
2

≤ A(δ)
∑

∥gi∥2ρ , E[A2] <∞,

which, similarly to the proof of Theorem 1, implies a stronger bound

τy(r) ≤ λ+
Aλ(δ)√
N

+ V (r), E[A2
λ] <∞ ∀ λ > 0,
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that allows to prove convergence in probability of θs → θ̂(y) as in Theorem 3, whenever
∥∥θ0 − θ∗

∥∥ <
r for some r > 0 (without requiring that θ0 → θ∗ in probability). Moreover, Br is invariant under
action of Ay even without condition (A1.c) which by the Schauder fixed point theorem implies

convergence of iterations in probability to
√
N -consistent estimate θ̂ of θ∗.

Theorem 4. Under conditions of Lemma 2:

(1) if θ0 is a consistent estimate of θ∗, then
√
N(θ̂ − θ∗) ⇒ N(0,m−1(θ∗)).

(2) If
√
N
∥∥θ0 − θ∗

∥∥ is bounded in probability, then
√
N(θs − θ∗) ⇒ N(0, [m∗]−1).

(3) Under additional requirements of (A3.c) and (A4.(r)) with r > 5, taking θ0 = θV for some
V > 0 from (A3.c) implies that the two first moments of

√
N(θ1 − θ∗) are bounded and converge

to the corresponding moments of the limiting Normal distribution.

Proof. From (15) and (1), it is easy to obtain the following equality:
√
N(θ̂ − θ∗) =

√
Nρ∗ +Ry, Ry = I+ II,

I
.
=

√
N

∫ 1

0
[∂(AN (θ∗ + λ(θ̂ − θ∗))δ∗)/∂θ](θ̂ − θ∗)dλ,

II
.
=

√
NAN (θ̂)

∫ 1

0
∆φ(θ∗ + λ(θ̂ − θ∗), θ̂)(θ̂ − θ∗)dλ.

It is sufficient by Lemma 3 to check that Ry → 0 in probability which follows immediately from
Theorem (3.d) and Theorem (1.3).

To prove (2), we use (1) again to obtain the set of equalities

Ay(θ
s)− θ∗ = ρ∗ +Ry,

√
NRy = I(s) + II(s), (16)

I(s)
.
=

√
N

∫ 1

0
[∂(AN (θs + λ(θ∗ − θs))δ∗)/∂θ](θs − θ∗)dλ,

II(s)
.
=

√
NAN (θs)

∫ 1

0
∆φ(θs + λ(θ∗ − θs), θs)(θs − θ∗)dλ.

Then we proceed with the proof by induction in s, taking into consideration boundedness in proba-
bility of

√
N(θs − θ∗), in the same way as in Theorem (4.3). From (16) with s = 0 using Minkovski

inequality for r = 4

E[
∣∣∣∑ ξi

∣∣∣r] ≤ (
∑

(E[|ξi|r])1/r)r

and using the fact that
√
N
∥∥θ0 − θ∗

∥∥ has bounded moments (from (1)), and finally applying

Cauchy–Schwarz inequality, we can prove that E[
∥∥∥I(1)∥∥∥2] < ∞, for N > N0. The boundedness

for N > N0 of the second moments of II(1) and ρ∗
√
N is proven as in Lemma 2 using the Whit-

tle’s inequality in the second case. The convergence of second moments follows immediately from
Theorem (1.1.b) which in turn implies (3).

6. LOWER BOUND FOR LINEAR UPDATES AND LAM OF REAGAN

Here we establish Local Asymptotic Minimaxity (LAM) of REAGAN with respect to the class
of linear in y updates. Let us fix a Q-model and a sequence of discrete designs εN satisfying
assumptions of section 3 without (A1.c) and (A3.c). Let us define risk to be:

rlN (t, θ∗)
.
= N sup

|lT (θ−θ∗)|<C/
√
N

Eθ[(l
T θ − aT y)2].
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Theorem 5. The following lower bound for the square loss of linear in y estimates t = aT y, y =
V ec{yN1 } of the parameter [θ∗]T l, l ∈ Rp is valid:

r(t)
.
= limC→∞limN→∞r

l
N (t, θ∗) ≥ lTm−1(θ∗)l. (17)

Instead of limC→∞ in (17) we could use condition C2 > lTm−1(θ∗)l.

Proof. We have
E[(lT θ − t)2] = (Eθ[t]− lT θ)2 + aTDθa.

Further,

aTµ(θ)− lT θ = (aTµ∗ − lT θ∗) + (aTφ∗ − lT )(θ − θ∗) +

+ aT [

∫
φ(θ∗ + λ(θ − θ∗))dλ− φ∗](θ − θ∗)

.
= I+ II(θ − θ∗) + III.

If I ̸= 0 or II ̸= 0, then their contribution to rlN (t, θ∗) is of order N and O(C) for C → ∞
respectively. At the same time, the contribution of III is of order O(C2/N). Under condition of
“local unbiasedness” of estimate t: I = II = 0, using method of proof of Gauss–Markov Theorem
for linearized model

Eθ[y − µ∗] = φ∗(θ − θ∗), Covθ[yi] = D∗
i

and Theorem (1.1.b), we obtain inequality

Dθ[t] ≥ N−1lT [m∗]−1l(1 + o(1)),

which is an asymptotic equality (Gauss). This completes the proof of the theorem.

If additionally (A1.c) holds, then estimates θ̂, θs, s ≥ 1 achieve their asymptotic limit (17)
under conditions (4.1,2) in terms of characteristics of limiting distribution. Under condition (4.3),
the same is true for θ1 in terms of its moments also.

Estimate θ1 is linear in y up to the fact that coefficients of correspondent linear form are
determined by

√
N -consistent estimate θ0. The LAM property of θ1 means that for any

√
N -

consistent initial approximation θ1 is the most precise asymptotically among all linear in y estimates
(even those depending on θ∗).

7. COROLLARIES OF THE TYPE 2 EMBEDDINGS OF BANACH SPACES

Let a continuous mapping ρ : [0 : ∞) → [0,∞), ρ(0) = 0 be s.t.

1. ρ() determines a metric in C (satisfying the triangle inequality);

2. The minimal number N() of ρ-balls of radius ε which cover B(r), r > 0, satisfies the Dudley–
Strassen inequality ∫ a

0
(logN)1/2dε <∞

for some a > 0.

Let Lipρ be the space of continuous functions on B(r) with norm

||g||ρ = g(θ∗) + sup
θ,θ′∈B(r)

|g(θ)− g(θ′)|/ρ(||θ − θ′||).

It is proved in [50] that the embedding Lip(ρ) → C(B(r)) has type 2. This means that for every
zero mean independent RV X1, . . . , XN , the following inequality holds:

E||
∑

Xi||2B(r) ≤ A
∑

E||Xi||ρ
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with the same constant for all N,X1, . . . , XN .

Let additionally to M1–M3 conditions hold: maximal continuity moduli of ∂Ay(θ)/ satisfy in-
equality

ω(·) ≤ cρ(·) (18)

for some c > 0.

Then the inequality (18) implies inequality

E||∂AN (θ)/|| ≤ c/N

for some c > 0 and

τy(r) ≤ ε/
√
N + V (r).

Remark. Condition (18) holds for ρ(x) = xb, 0 < b < 1.

Theorem 6. 1. If conditions of theorem 3 (section 5) hold and initial approximation θ0 is suffi-
ciently close to θ∗, then the limit θ∞ exists in probability and satisfies

√
N(θ∞ − θ0) → N(0,M−1)(θ∗);

2. The same convergence holds for θs, s ≥ 1, if
√
N(θ0 − θ∗) is bounded in probability;

3. The condition of 2. holds for θ0 = θW , where the constant weight matrix W is positively
definite. In this case, in addition to the statements of 2., two first moments of

√
N(θ1 − θ∗) are

bounded in probability and converge to the same moments of the limiting distribution.

Proof. 1. The representation

√
N(θ∞ − θ0) =

√
Nρ∗ +Ry, Ry = I+ II,

I =
√
N

∫ 1

0
[(∂(AN )/∂θ)(θ∞ + λ(θ∞ − θ∗))δ∗)]dλ,

II =
√
NAN (θ∞)

∫ 1

0
∆φdλ(θ∗ + λ(θ∞ − θ∗), θ∞)(θ∞ − θ∗),

follows from lemma 3 and theorem 3.3 (section 5). It is straightforward to prove that Ry → 0 in
probability using lemma 3 and theorem 3 (section 5).

Proof of 2: The Identity 1 and (11) imply

(θs)− θ∗ = ρ∗ +Ry,

Ry = I(s) + II(s).

The proof uses induction over s and boundedness of
√
N(θ1 − θ∗) in probability and is similar

to the proof of Theorem 3 (section 5). For s = 0 and for all sufficiently large N applying (19) and
the Minkowski inequality

E|
∑

ξi|r ≤ (
∑

(E|ξi|r))1/r)r
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for r = 4 and statement of 1, we get E∗||l(1)||2 < ∞ and boundedness of I(s) and of second
moments of

√
Nρ∗ using Theorem 3 (section 5) and the Whittle inequality.

The convergence of the second moments follows from Theorem 4 (section 5). and Theorem
5.2.1.b implying the statement of 3.

Comparing with Theorem 3 (section 5), we see that the lower bounds for θ1 under static design εN
become equalities under our conditions.

8. REAGAN PROPERTIES UNDER ADAPTIVE ASYMPTOTICALLY DETERMINISTIC
DESIGNS

REAGAN procedures for adaptive asymptotically deterministic (AD) designs satisfying for some
r > 0 and every g(·) ∈ (C(X)×Θ), the condition

lim
t→∞

(N)−2D∗
N∑
i=1

g(xi, θ) = 0

uniformly over θ ∈ B(r) are studied in [28]. This condition is usually valid for locally optimal
sequential designs for estimation or testing hypotheses.

Asymptotic Normality and LAM property of estimates is proved under this assumption in [28].

Remark 4. If this condition is violated, then instead of the Normal distribution of the limiting
statistic, the mixture of Normals usually holds, see [29,35].

9. LAM-POLYNOMIAL ESTIMATES. VARIANCE COMPONENTS.

Let us consider the following generalization of F -model—”F k-model”omitting technical details
similar to the ones above. Let the set Mi(2k) = (mi(1), . . . ,mi(2k)) of the first 2k moments of
the observation yi of dimension m is a function of θ ∈ Θ ⊂ Ep and xi ∈ X, i = 1, . . . , N , with
the global (as in (A3.c)) or local (as in (A3.b)) requirement that θ is uniquely determined by
M1(k), . . . ,MN (k), and regularity condition similar to ones of sections 3 and 4. Then it is natural
to study the class Pk of estimators of θ∗ of the form t =

∑
i Pki(yi) where Pki are polynomials of

degree not higher than k taking estimator’s second moment as optimality criterium (as in section
6). Let us introduce the vector

zi = V ec{yi, V ec(yiyTi ), . . . , V ec(y⊗k
i )}

where a⊗k = a1 ⊗ . . . ⊗ ak is a tensor product of a1 = . . . = ak = a. It is clear that Eθ[zi] is a
function ofMi(k), while Covθ[zi] is a function ofMi(2k). This is why measurements zi are described
by extended Q2-model whose dimension Amk does not exceed the number of different monomials in
y1 of degree not higher than k. Class Pk is the same as the class of linear in z1, . . . , zN estimators
of the form t = lT z. This fact and regularity conditions similar to those in Theorem 4 imply the
following result.

Theorem 7. REAGAN-estimates for extended Q2-model are LAM with respect to the class Pk

of estimates for Qk-model.

Let us explain how to reduce Variance Component Model to Q2-model by using simple example.
Consider

yi = φiβ + ei + αi1Ji , yi, ei ∈ RJi , β ∈ Ep, φi ∈ RJi×p
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Ji ≤ J, αi ∈ E1, ei = (ei1, . . . , eiJi)
T

where αi, eij are mutually independent random variables.

E[eij ] ≡ E[αi] ≡ 0, D[eij ] ≡ σ2, D[αi] = σ2A, E[yi] = φiβ, Cov(yij , yi′k) ≡ 0 ∀ i ̸= i′,

Cov[yi] = σ2I+ σ2A1Ji1
T
Ji , E[ykij ] = fki(β, σ, σA), k = 3, 4,

where fki, φi, ∂φi/∂θ, ∂fki/∂θ, θ = (β, σ, σA) are continuous bounded functions. Then yi, i =
1, . . . , J are described by F 2-model in each block Bg = {i : Ji = g}. Other VCMs are reduced to
Q2-models in a similar way. We display it in detail in our section 12 for proving profound results
on one-way mixed ANOVA model.

10. REAGAN RELATION TO MLE

Q-models specify only two first moments of a distribution. The equation (15) is generally not
equivalent to the Maximum Likelihood Equations, even for measurements distributed according to
Gaussian (Normal) Distribution. It is worth considering the following problem:

Problem 1. For a given Q-model determined by µ(θ) and relation between Vi(θ) and µ(θ) find
the distribution family Px,θ such that estimators θ̂ for this distribution satisfy Maximum Likelihood
equation or, more generally have the worst possible covariance matrix.

This family will then be asymptotically the worst in the sense of quadratic risk (under suitable
regularity requirements) for the respectiveQ-model, but REAGAN-estimates will be asymptotically
MiniMax estimates in the class of arbitrary estimators.

This is done so far in situations when relationships µi = µ(xi, θ), Di = D(xi, θ) represent
‘curves’ in regular exponential family of distributions P ∗

x,θ with the density w.r.t. measure µ on
Rm:

p∗x,θ(y)
.
= exp{hT (x, θ)y − ν(x, θ)}, y ∈ Rm (19)

It is easy to check that in this case the Maximum Likelihood equation is reduced to the form:

N∑
i=1

∂ ln p∗xi,θ
(yi)

∂θ
=

N∑
i=1

φT (xi, θ)D
−1(xi, θ)δi(θ) = 0 (20)

which is equivalent to (15). Under regularity requirements [2], the Maximum Likelihood equation
has a unique solution which belongs to the domain of convergence of the integral of density (19).
By Theorem 5.3 the solution θ̂ of the Maximum Likelihood equation (20) is the limit of REAGAN
and if initial approximation θ0 is

√
N -consistent then even θ1 has the same asymptotic distribution

as θ̂.

Let us consider class K(µ,D) of distributions P̃x,θ with the same mean value as for (19) and
covariance matrix D̃(x, θ) ≤ D(x, θ). Then under certain regularity conditions on densities p̃x,θ,
MLE for them is also LAM estimate (in LAM definition we can take sup over domain ∥θ − θ∗∥ ≤ C√

N

for sufficiently large C). At the same time REAGAN-estimate θ1 for P̃ ∈ K(µ,D) has the limiting
quadratic risk which is no larger than one for density (19). Having in mind either quadratic risk
for the limiting distribution or taking class K(µ,D) such that θ1 has two finite moments (Theorem
(4.3)) and with notation r(t, P̃ ) for the left side of (17) for arbitrary estimate t and distribution P̃ ,
let us write down the following chain of inequalities:

inf
t

sup
K(µ,D)

r(t, P̃ ) ≥ sup
K(µ,D)

inf
t
r(t, P̃ ) ≥

≥ inf
t
r(t, P ∗) = r(θ1, P ∗) ≥ sup

K(µ,D)
r(θ1, P̃ )
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Thus, θ1 is MiniMax LAM-estimator with respect to any estimator and distributions in class
K(µ,D).

11. MULTIVARIATE NORMAL MEAN FIT UNDER UNKNOWN CONSTANT COVARIANCE

The multivariate Normal Distribution with unknown mean µ(xi, θ) and constant covariance
matrix D =W−1 is a regular exponential family with density

p∗x,θ,W (y) = [detW ]
1
2 (2π)−

m
2 exp{tr(A(θ)W

2
)},

A(θ) =

N∑
i=1

δi(θ)δ
T
i (θ).

Introduce
K
.
= {P̃x,θ,W : Ẽ[z] = E∗[z], C̃ov[z] ≤ Cov∗[z]},

where
z
.
= V ec(y, V ec[yyT ])

is the class of regular densities. Let us apply previous results to this class. The following is the
system of Maximum Likelihood equations for P ∗:

tr[(Ŵ−1 −A(θ̂))∂Ŵ ] = 0, (21)

tr[∂A(θ̂)Ŵ ] = 0. (22)

It follows from (21) that Ŵ = A−1(θ̂), and (22) implies that detA(θ̂) = min, i.e. we obtained the
equation for REAGAN’s limit. This estimate is MiniMax in the class of arbitrary estimates and
P̃ ∈ K which follows from the previous theory.

12. MIXED GAUSSIAN ANOVA

12.1. Introduction and Outline of Main Results

Consider a classical mixed ANOVA model

y = Xγ +
k∑

i=1

siUiϕi. (23)

Here y = yN is (N×1) - vector of measurements, X = XN , Ui = (Ui)N are respectively (N×p)
and (N ×ni) -matrices of known parameters, ϕi is an (ni× 1) -normally distributed random vector
ϕi ∼ N (0, Idni

), ; γ ∈ Rp and si ∈ R+, i = 1, . . . , k, are unknown parameters, Idni
is identity

matrix of dimension ni.

It is clear that
Ey = Xγ,

V = Covy =

k∑
i=1

s2i Gi, Gi = UiU
T
i ,

thus di = s2i are called variance components.

The pioneer work, where ANOVA methods were applied to testing hypotheses on variance com-
ponents for a balanced mixed model was [9], later R.Fisher devoted some attention to those models
in his famous book [10]. Important contributions to this theory were made later by F. Yates, A.
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Wald, C. Eisenhart, H. Sheffe, S.R. Searle, C.R. Rao, T.W. Anderson among many others. A critical
ANOVA overview by A.N. Kolmogorov is reproduced in [38].

We develop maximum likelihood estimates (MLE) for the parameter θ = (γT , d1, . . . , dk) of the
distribution Pn

θ (y) in model (1). We do not touch unbiased quadratic estimates studied in [41].

For mixed models MLE cannot be evaluated analytically. Asymptotics for MLE-s under some
restrictive conditions was heuristically discussed in [13] Asymptotic normality (AN) of MLE-s under
more general conditions was proved in [36].

The asymptotic efficiency and normality of MLE’s do not follow from Cramer’s classical theory
because the measurements in (1) are essentially dependent

One of our principal aims in the present paper is to outline (for the simplest case of One-Way
classification and bounded loss functions) a proof of the Local Asymptotic Minimaxity (LAM) of
MLE and of certain approximations to MLE. LAM as formally defined further by the property
just below (26), means that the deviation of the estimate from the true value θ∗ is as minimal as
possible in the local minimax sense.

We prove this here for One-Way ANOVA using certain modified Fisher score updates introduced
further in section 12.2. Although the derivation scheme is similar to that displayed in sections 3–8,
the complexity of this iterative quadratic estimation procedure grows considerably. Accordingly, the
enumeration of subsections and formulas is separate starting in this large section 12.

For the convergence of our modified iterative Fisher score statistic in probability we need arbi-
trary (non- qualified) consistency of the initial guess. A geometric rate of the iterations’ convergence
uniformly over initial guesses from a neighborhood of θ∗ proved by us in theorem 8 implies that
after const logN iterations (for appropriately large const) we get the qualified consistency of the
derived estimate. We show that the next iteration provides us with an efficient (maximin) estimate
and that the limit of iterations satisfies MLE equation section 12.4. Thus, LAM property of MLE
becomes transparent since the modified Fisher score update for MLE is MLE itself and the proved
contraction property of the modified Fisher score iterations imply the convergence of any solution
to the MLE equation in probability to a single point as the sample size increases.

The Local Asymptotic Normality (or simply LAN) [20] is (in our case) the following decompo-
sition of

Ln(u) = ln[dP
(n)

θ+Ξ1/2u
/ d P

(n)
θ ],u ∈ Rp+k :

Ln(u) = uTλ− (1/2)uTJu+ ψn(u), (24)

where

λ ∼ N(0, J), J =

{
B 0
0 C,

}
di > 0, i = 1, . . . , k,

and ψn(u) converges in P
(n)
θ -probability to zero.

This decomposition was claimed in [32] for general mixed ANOVA-models under the conditions
close to those of [36].

Particularly,
Ξ−1 = diag(ν0(n), . . . , νp−1(n), ν(n)p, . . . , ν(n)p+k−1, );

νi(n) ≡ ν0(n), 0 ≤ i ≤ p− 1,

was assumed in [32] to provide the existence for 1 ≤ i ≤ j ≤ k of
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Cij = lim
n→∞

(1/2)tr(V −1GiV
−1Gj)ν

−1/2
p−1+i(n)ν

−1/2
p−1+j(n), B = lim

n→∞
ν−1
0 (n)XTV −1X. (25)

Complete proofs in [32] were not published. The parameters of the limiting normal distribution
for MLE estimates found in [36] coincide with those in (25). We prove the existence of these limits
in section 12.4 under mild regularity conditions.

A function w(·) : Rp → R+ is called bowl-shaped if {u∥ w(u) ≤ a} are closed bounded sym-
metric convex sets for any a ≥ 0.

The fundamental Hajek’s lower bound for the LAM-risk of any estimate Tn (defined by the
left-hand side of (26)) for any bowl-shaped loss function w(·)

lim inf
n→∞

{sup
θ∈Θ

Eθw
(
J−1/2(θ) ·Ξ−1/2(Tn − θ)

)
} ≥

∫
w(u)(2π)−(k+p)/2e−|u|2du, (26)

is implied by LAN (see e.g. [15]). Tn satisfies LAM if equality holds in (26).

Our analysis in section 12.5 implies the uniform convergence of ψn(u) from (24) to zero in P
(n)
θ -

probability. Namely, for all K > 0, a > 0

lim
n→∞

P
(n)
θ

(
sup

||u||<K
|ψn(u)| > a

)
= 0

holds.

This could be used for proving LAM of Le Cam’s updates uniformly over some region of qualified
initial guesses [20].

We rely on the theorem in our subsection 1 proving that the result θ1 of the one-step iteration for
a general multivariate regression model introduced in section 12.2 (see (30)) attains the equality
in (26) for any bounded (not necessarily bowl-shaped) loss function uniformly over some set of
Ξ1/2-consistent initial guesses for θ, namely,

lim
n→∞

sup
θ∈Θ

Eθw
(
J−1/2(θ) ·Ξ−1/2(θ1 − θ)

)
=

∫
w(u)(2π)−(k+p)/2e−|u|2du. (27)

In view of the Hajek’s lower bound (4) this means Local Asymptotic Minimaxity (LAM) of θ1.

The uniformity over initial guesses mentioned above permits us to plug in an initial guess
depending on the same sample as the improvement θ1 does.

We formulate and prove LAN property for One-Way ANOVA model in subsection 12.5. Before
that we define and study in sections 12.3–12.4 a quadratic modification of iterative procedure REA-
GAN for fitting One-Way ANOVA model considered as a multivariate regression model. REAGAN
uses modified Fisher-score statistics as the updates for the preceding step of this iterative procedure.
We prove the convergence of REAGAN-estimates in probability to MLE in section 12.4. In [21] this
was written for a general mixed ANOVA-model following the general method developed in [28]. [21]
has not been published and seems to contain some gaps. Our method differs in some details from
that of [21]. Particularly, for One-Way layout we diagonalize globally the covariance matrix of the
the observations in section 12.3 which simplifies our analysis considerably as compared to a general
mixed model, where this diagonalization can be made only locally under the true values of the
parameters.

Our computation of the limiting covariance matrix J for the estimates of parameters in One-Way
mixed model implies that the designs minimizing natural functionals of J differ drastically from
those for One-Way model with fixed parameters. Namely, the optimal design need not be balanced
to obtain the minimal principal term of the expansion of the risk in section 12.6, see also [1].
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12.2. Assumptions. Definition of Iterative Procedure.

The following One-Way Mixed model is considered

yi,j = θ0 + θ1 · xi + bi + εi,j , (28)

where we have n blocks (1 ≤ i ≤ n) and each of the blocks contains precisely mi elements (i.e. for a
fixed i, 1 ≤ j ≤ mi). The size of each block mi and the total number of observations N = Σi=n

i=1mi

are positive nondecreasing integer-valued functions of n. The following assumptions are made about
the model:

Assumption 1.1. There exist a constant a > 0 and a nondecreasing function M = M(n) such
that 0 < a ·M(n) ≤ mi(n) ∀i ≤ n.

Assumption 1.2. ε = (ε1,1, ... , ε1,m1 , ε2,1, ... , εn,mn)
T ∼ N (0, β · IdN ), b = (b1, ... , bn)

T ∼
N (0, α · Idn), where N = Σi=n

i=1mi ; the elements of b and ε are mutually and jointly independent.

We can rewrite (28) in matrix form as

y = F(x, θ0, θ1) +U · b+ ε. (29)

Here y = (y1, ... , yN )T = (y1,1, ... , y1,m1 , y2,1, ... , yn,mn)
T , F(x, θ0, θ1) is a column whose

first m1 entrees all equal θ0 + θ1 · x1 followed by m2 (θ0 + θ1 · x2) and so on, and U is an
N × n matrix that consists of zeros and ones, the first column being filled with m1 ones first,
followed by zeros, the second– with m1 zeros, then with m2 ones followed by zeros, etc., and,
finally, the very last column of U has ones as the last mn entries and zeros everywhere else;
ε = (ε1, ... , εN )T = (ε1,1, ... , ε1,m1 , ε2,1, ... , εn,mn)

T .

Assumption 1.3.∀i xi ∈ X, and X is a bounded subset of R.

Define θ∗ to be the unknown true vector value of parameter

θ∗ = (θ∗0, θ
∗
1, θ

∗
2, θ

∗
3)

T = (θ∗0, θ
∗
1, α

∗, β∗)T

Our objective is to estimate θ∗ given a vector of observations y. The next assumption refers to
the parameter space Θ ⊂ R4.

Assumption 1.4. Θ is compact, contains an open neighborhood of θ∗, and ∀θ = (θ0, θ1, θ2, θ3)
T ∈

Θ we have infθ∈Θ α, infθ∈Θ β > 0 (α = θ2, β = θ3).

We take the N × 1 vector y and construct from it the N + N(N + 1)/2 vector z by adding
products ykyl, 1 ≤ k ≤ l ≤ N in the lexicographic order:

z = (y1, ... , yN , y1y1, ... , y1yN , ... , yN−1yN , yNyN )T .

The position in a row or a column of length N + N(N + 1)/2 having the same number as
that containing ykyl (or zp) in z if we count from the top will be referred to as the position that
corresponds to ykyl, 1 ≤ k ≤ l ≤ n (or zp, 1 ≤ p ≤ N +N(N +1)/2); the same convention for “the
position corresponding to yl, 1 ≤ l ≤ N”.

The obvious formula z = Ez+ r,Er = 0, where the first N entries of Ez coincide with those of
F(x, θ0, θ1), whereas the remaining components of Ez are identical to those of the vector (for the
definition of vech, see e.g. p. 332 in [43]).

vech
{
F(x, θ0, θ1)F

T (x, θ0, θ1) + θ3UUT + θ4Id
}
,

and therefore represent quadratic functions of θ∗0, θ
∗
1. The covariance function of unbiased “errors”

r in the above multivariate regression model is evaluated via first 4 moments of the multivariate
gaussian distribution given its first 2 moments.
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The Fisher score update for the parameters’ initial guess of our model is given by the one step
of the REAGAN. We show at the end of section 12.4 that after sufficiently many iterations we get
arbitrarily close approximation to MLE, i.e. we collect essentially all information on the parameters
of the model from the observations.

The REAGAN consists of iterations of the same one-step operator which is defined below:

U(θ) = Un, z(θ) = θ + [ϕT ·D−1 · ϕ]−1 · ϕT ·D−1 · (z− Ez). (30)

The factors in (30) are:

ϕ = ϕn, z(θ) =

[
∂

∂θ
Ez

]T
,

D = Dn, z(θ) = Cov(z, z).

The matrix ϕTD−1ϕ in (30) is given in explicit form by formula (42) (replace α̃, β̃ with α, β),
so our next assumption pertains to the way x′is should be chosen:

Assumption 1.5. For all n large enough

inf
Θ

∣∣ { (1/n) · Id3 0
0 1/N

}
· ϕTD−1ϕ

∣∣ > c > 0, where c is a constant.

(notice that |ϕTD−1ϕ| is always nonnegative).
Finally, the asymptotic results of Section 12.5 require two more assumptions.

Assumption 1.6. The limits lim
n→∞

1

n
Σxi and lim

n→∞

1

n
Σx2i exist, are finite, and equal x̄ and x̄2

respectively.

Assumption 1.7. lim
n→∞

M(n) = +∞ (i.e. inf1≤i≤nmi(n) → +∞ as n→ ∞).

Notice that Assumptions 1.1 and 1.7 entail lim
n→∞

n/N = 0.

Remark 5. Suppose that Assumptions 1.1–1.4, 1.6–1.7 hold. Then, (42) implies that Assumption
1.5 translates into a simple requirement that x̄2 − x̄2 > 0.

12.3. Preliminary results.

We start by observing that the covariance matrix of y given by

V = Vn, y(θ) = Covθ(y,y) = α ·UUT + β · IdN (31)

has a block-diagonal form. There are n blocks of dimensions m1 ×m1, ... ,mn ×mn respectively
and each of the blocks has α+ β along the main diagonal and α’s everywhere else:

α+ β α . . . α
α α+ β . . . α
...

...
. . .

...
α α . . . α+ β

 . (32)

V is symmetric and positive-definite. It is clear from (31) that there exists a block-diagonal
orthogonal map O with block sizes identical to those of V , such that OTVO is a diagonal matrix
for all values of θ ∈ Θ . It is an exercise in linear algebra to verify that an mi×mi block of type (32)
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has two eigenvalues, i.e. β and mi · α+ β, that occur with multiplicities mi − 1 and 1 respectively.
Set y◦ = (y◦1, ... , y

◦
N )T = OT · y. Without loss of generality we can assume that O is an N × N

block-diagonal orthogonal matrix s.t. for 1 ≤ k ≤ N ,

V arθ(y
◦
k) = mi · α+ β, (33)

if k = m1 + · · ·+mi, β otherwise

Next we observe that for an arbitrary linear automorphism B of RN+N(N+1)/2 and any (N +
N(N + 1)/2) × 1 vector t filled with some constants, the operator U = Un, z(θ) is invariant with
respect to replacement of z by B · z+ t:

Un, z(θ) ≡ Un, B·z+t(θ) (34)

in fact, we even have

ϕTn, z(θ) ·D−1
n, z(θ) · ϕn, z(θ) ≡ ϕTn, B·z+t(θ) ·D−1

n, B·z+t(θ) · ϕn, B·z+t(θ)ϕ
T
n, z(θ) ·D−1

n, z(θ) ≡

ϕTn, B·z+t(θ) ·D−1
n, B·z+t(θ) ·B. (35)

Now, the idea is to use a suitable transformation of z that leaves the operator U invariant,
but at the same time makes it much easier to analyze U . For each θ ∈ Θ we produce a separate
transformation of the kind z 7→ B·z+t and compute ϕTn, z(θ)·D−1

n, z(θ)·ϕn, z(θ) and ϕ
T
n, z(θ)·D−1

n, z(θ)
explicitly.

Fix a θ̃ ∈ Θ. Set ỹ = (ỹ1, ... , ỹN )T = OT (y − F̃), here F̃ = F(x, θ̃0, θ̃1). Then ỹ is a Gaussian
vector with diagonal Covariance matrix and Eθ̃ỹ = 0. Now, for some nonsingular matrix B̃,

z̃ = (ỹ1, ... , ỹN , ỹ1ỹ1, ỹ1ỹ2, ... , ỹN ỹN )T = B̃ · z+ t̃. (36)

Let F̃◦ = OT · F̃, then the kth component f̃◦k of this N × 1 vector is

f̃◦k =
√
mi · (θ̃0 + θ̃1 · xi), (37)

if k = m1 + ...+mi , 0 otherwise.

This is implied by the fact that for eachmi×mi block of type (32) the one-dimensional eigenspace
corresponding to the value mi ·α+β is generated by the sum of all basis vectors of the subspace on
which the block acts. B̃ maps yk to y◦k, 1 ≤ k ≤ N , and ykyl to y

◦
ky

◦
l − f̃◦k ·y◦l − f̃◦l ·y◦k, 1 ≤ k ≤ l ≤ N ,

hence it can be represented as a product of two matrices:

B̃ =

{
IdN 0
MF̃◦ Id

N+
N(N+1)

2

}
·

{
OT 0

0
[
Sym2O

]T } , (38)

where Sym2O is the restriction of O ⊗ O to the subspace of E ⊗ E (E =< e1, ... , eN > being a

linear space on which O acts) spanned by all vectors of the form
1

2
(ek ⊗ el + el ⊗ ek), 1 ≤ k, l ≤ N ,

and

MF̃◦ (39)

is an (N + N(N+1)
2 )×N matrix obtained from IdN ⊗ F̃◦+ F̃◦⊗ IdN by removing (N +1)st, (2N +

1)st, (2N + 2)nd, ... , (k · N + 1)st, ... , (k · N + k)th, ((k + 1) · N + 1)st, ... , ((N − 1) · N +
1)st, ... , ((N − 1) ·N +N − 1)st rows.
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B̃−1 =

{
O 0

0 (
[
Sym2O

]T
)−1

}
·

{
IdN 0

−MF̃◦ Id
N+

N(N+1)
2

}
. (40)

It follows from the definition of z̃ that

Dn, B̃·z+t̃(θ̃) = diag(V arθ̃(ỹ1), ... , V arθ̃(ỹN ), V arθ̃(ỹ1ỹ1), V arθ̃(ỹ1ỹ2), ... , V arθ̃(ỹN ỹN ))

and with a little bit more work involved one can show that

ϕn, B̃·z+t̃(θ̃) =



0 0 0 0
...

...
...

...√
m1

√
m1x1 0 0

...
...

...
...

0 0 0 0√
mn

√
mnxn 0 0

0 0 0 1
0 0 0 0
...

...
...

...
0 0 m1 1
...

...
...

...
0 0 0 0
0 0 mn 1



,

where the first two columns have mi and mixi, 1 ≤ i ≤ n, respectively in positions that cor-
respond to ỹm1+...+mi and zeros everywhere else; the nonzero elements of the third column are
precisely mi, their positions correspond to ỹm1+...+mi ỹm1+...+mi . Finally, the last column contains
ones corresponding to ỹkỹk, 1 ≤ k ≤ N , and zeros in every other position.

For a random vector ξ = (ξ1, ... , ξn)
T ∼ N (0, V ) the covariance matrix of the vector ξ ⊗ ξ is

given by 2Nn ·(V ⊗V ), where Nn is an n2×n2 matrix such that for any n×n matrix A the following
identity holds Nn ·vecA = vec

{
1
2(A+AT )

}
(Theorem 10.2, p.164 in [22]). This fact, together with

the diagonality of Dn, B̃·z+t̃(θ̃) makes it possible to obtain ϕT
n, B̃·z+t̃

(θ̃) ·D−1
n, B̃·z+t̃

(θ̃) :


0 . . .

√
mn

α̃mn+β̃
0 . . . 0 . . . 0

0 . . .
√
mnxn

α̃mn+β̃
0 . . . 0 . . . 0

0 . . . 0 0 . . . m1

2(α̃m1+β̃)2
. . . mn

2(α̃mn+β̃)2

0 . . . 0 1
2β̃2

. . . 1
2(α̃m1+β̃)2

. . . 1
2(α̃mn+β̃)2


, (41)

here, just like in the case of (40), nonzero elements only occur in positions corresponding to
ỹm1+...+mi for the first two rows, ỹm1+...+mi ỹm1+...+mi and ỹkỹk for the third and fourth rows

respectively (1 ≤ i ≤ n, 1 ≤ k ≤ N). In the first three rows these positions are filled with
√
mi

α̃mi+β̃
,

√
mixi

α̃mi+β̃
, and mi

2(α̃mi+β̃)2
accordingly. For the fourth row, if k = m1 + . . . + mi, then the position

corresponding to ỹkỹk is filled with 1
2(α̃m1+β̃)2

, otherwise it has 1
2β̃2

.
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Next we exhibit ϕT
n, B̃·z+t̃

(θ̃) ·D−1
n, B̃·z+t̃

(θ̃) · ϕn, B̃·z+t̃(θ̃):

Σ mi

α̃mi+β̃
Σ mixi

α̃mi+β̃
0 0

Σ mixi

α̃mi+β̃
Σ

mix
2
i

α̃mi+β̃
0 0

0 0 Σ
m2

i

2(α̃mi+β̃)2
Σ mi

2(α̃mi+β̃)2

0 0 Σ mi

2(α̃mi+β̃)2
Σ 1

2(α̃mi+β̃)2
+ 1

2β̃2
· (N − n)


, (42)

the summation runs over 1 ≤ i ≤ n. As the final step of preparation for evaluating the U(θ)
explicitly, we note that

ϕTn, z(θ̃) ·D−1
n, z(θ̃) ≡ ϕT

n, B̃·z+t̃
(θ̃) ·D−1

n, B̃·z+t̃
(θ̃) · B̃ ·B∗−1B∗, B∗ is B̃ when θ̃ = θ∗.

We now put together (41), (38), (40), and (39) to obtain ϕTn, z(θ̃) ·D−1
n, z(θ̃):

0 . . .
√
mn

α̃mn+β̃
0 . . . 0 . . . 0

0 . . .
√
mnxn

α̃mn+β̃
0 . . . 0 . . . 0

0 . . .
mn

√
mn(θ∗0−θ̃0+(θ∗1−θ̃1)xn)

(α̃mn+β̃)2
0 . . . m1

2(α̃m1+β̃)2
. . . mn

2(α̃mn+β̃)2

0 . . .
√
mn(θ∗0−θ̃0+(θ∗1−θ̃1)xn)

(α̃mn+β̃)2
1

2β̃2
. . . 1

2(α̃m1+β̃)2
. . . 1

2(α̃mn+β̃)2


·B∗, (43)

the left multiplier in (43) differs from the matrix (41) only in the third and fourth rows: in (43), the
third and the fourth rows contain nonzero elements in positions that correspond to ỹm1+...+mi , and

those elements are precisely
mi

√
mi(θ

∗
0−θ̃0+(θ∗1−θ̃1)xi)

(α̃mi+β̃)2
and

√
mi(θ

∗
0−θ̃0+(θ∗1−θ̃1)xi)

(α̃mi+β̃)2
respectively, whereas

these places are filled with zeros in the case of (41); all the other entrees of (41) and the left multiple
of (43) are identical. Here, as usually, 1 ≤ i ≤ n. It is convenient to introduce special notation for
the left multiple in (43), hereafter it will be denoted by Q = Qn, z(θ̃):

ϕTn, z(θ̃) ·D−1
n, z(θ̃) = Q ·B∗. (44)

We are now ready to rewrite U defined by (12.1.3) in a form that simplifies our analysis in the
subsequent section: for any θ ∈ Θ,

U(θ) = θ + [ϕTD−1ϕ]−1 ·QB∗((z− Eθ∗z) + (Eθ∗z− Eθz)) =

θ + [ϕTD−1ϕ]−1 ·Q · (z∗ − Eθ∗z
∗) + [ϕTD−1ϕ]−1 ·QB∗(Eθ∗z− Eθz), (45)

where, in view of (35), [ϕTD−1ϕ] is given by (42), Q is the left multiple in (43) (we replace θ̃
with θ in Q), and B∗ is obtained from (38) by plugging in θ∗ instead of θ̃; z∗ is obtained from
z̃ likewise. As the last result of this section, we compute the 4 × 1 vector QB∗(Eθ∗z − Eθz) =
ϕTN, z(θ) ·D

−1
N, z(θ)(Eθ∗z− Eθz):

Σ
mi(θ

∗
0−θ0+(θ∗1−θ1)xi)

αmi+β

Σ
mixi(θ

∗
0−θ0+(θ∗1−θ1)xi)
αmi+β

Σ
m2

i (θ
∗
0−θ0+(θ∗1θ1)xi)

2+m2
i (α

∗−α)+mi(β
∗−β)

2(αmi+β)2

Σ
mi(θ

∗
0−θ0+(θ∗1−θ1)xi)

2+mi(α
∗−α)+(β∗−β)

2(αmi+β)2
+ β∗−β

2β2 (N − n)


, (46)

the sums are taken over 1 ≤ i ≤ n.
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12.4. Convergence of REAGAN to MLE.

In this section, using formulas obtained in 12.3, we establish the convergence of the REAGAN,
provided that our initial approximation of θ∗ belongs to some open neighborhood B∗ ⊂ Θ of θ∗.
Unfortunately, we can tell nothing more about B∗ than it exists. The proof depends heavily on

Theorem 8. Under Assumptions 1.1–1.5, for any r > 0 there exists an open neighborhood B∗
r⊂Θ

of θ∗ such that

lim
n→∞

Pn
θ∗

[
sup
B∗
r

∥ ∂

∂θj
U(θ)∥ > r

]
= 0, where 0 ≤ j ≤ 3. (47)

In view of (45)

∂

∂θj
U(θ) = ∂

∂θj

{
[ϕTD−1ϕ]−1 ·Q

}
· (z∗ − Eθ∗z

∗) +
∂

∂θj

{
[ϕTD−1ϕ]−1 ·QB∗} (Eθ∗z− Eθz).

We rewrite the two summands in the statement above as

∂

∂θj

{
[ϕTD−1ϕ]−1 ·Q

}
· (z∗ − Eθ∗z

∗) = − ∂

∂θj

{
[ϕTD−1ϕ]−1

}
·Q · (z∗ − Eθ∗z

∗)+

[ϕTD−1ϕ]−1 · ∂

∂θj
{Q} · (z∗ − Eθ∗z

∗)
∂

∂θj

{
[ϕTD−1ϕ]−1 ·QB∗} (Eθ∗z− Eθz) =

∂

∂θj

{
[ϕTD−1ϕ]−1

}
·QB∗(Eθ∗z− Eθz) + [ϕTD−1ϕ]−1 · ∂

∂θj
{QB∗} (Eθ∗z− Eθz). (48)

It suffices to establish that ∀r > 0 ∃B∗
r and Nr ∈ N s. t.

lim
n→∞

Pn
θ∗

[
sup
B∗
r

∥ ∂

∂θj

{
[ϕTD−1ϕ]−1

}
·Q · (z∗ − Eθ∗z

∗)∥ > r

]
= 0, (49)

sup
B∗
r

∥ ∂

∂θj

{
[ϕTD−1ϕ]−1

}
·QB∗(Eθ∗z− Eθz)∥ < r ∀n ≥ Nr, (50)

the proof of similar statements for the two remaining expressions that appear in (48) is completely
analogous. We establish (50) and (49) with the help of the two lemmas which actually repeat
appropriate parts of more general auxiliary theorem 1, section 3. Therefore, their proofs are skipped.

Lemma 4. Let G = {gi,n(θ), 1 ≤ i ≤ n}∞n=1 be an equicontinuous, uniformly bounded family of

functions on a compact set Θ. Then g(θ) = lim sup
n→∞

| 1
n
Σn
i=1gi,n(θ)| is a continuous, bounded function

and

lim
n→∞

∥ g(θ)− sup
s≥n

∣∣1
s
Σs
i=1gi,s(θ)

∣∣ ∥Θ = 0,

i.e. the convergence is uniform in θ ∈ Θ.

Lemma 5. Let G be as it is defined in Lemma 4. Let X =
{
{Xi,n}ni=1

}∞
n=1

be a collection of finite
sequences of centered random variables with uniformly bounded variances. We further assume that
for each {Xi,n}ni=1 ∈ X the elements are mutually uncorrelated: Covn(Xi,n, Xj,n) = 0 if 1 ≤ i <
j ≤ n. Then

sup
Θ

∣∣∣∣ 1nΣn
i=1Xi,n · gi,n(θ)

∣∣∣∣ −→ 0 in probability.
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Proof of Theorem 8.

We notice that under Assumptions 1.1 and 1.4 the families
{

m
αm+β

}
m∈Z+

,
{

m2

(αm+β)2

}
m∈Z+

, and{
m

(αm+β)2

}
m∈Z+

consist of differentiable equicontinuous uniformly bounded functions; the same is

true if we replace each function in the listed families with its partial derivative with respect to θj ,
0 ≤ j ≤ 3. By Φ(θ) we denote the 4× 4 matrix function obtained from ϕTD−1ϕ by replacing each
entry with its absolute value. Since all xi are uniformly bounded, it follows immediately from (35),
(42) and Lemma 4 that

Φ1(θ) = lim sup
n→∞

{
1
n · Id3 0

0 1
N

}
· Φ(θ) (51)

is a continuous matrix function on compact Θ and convergence is uniform in θ ∈ Θ. Thereby, for
all n large enough the elements of the 4× 4 matrix

Ψ(θ) =

{
1
n · Id3 0

0 1
N ·
[
ϕT ·D−1 · ϕ

]}
are uniformly bounded, whence, by Assumption 1.5, the same holds with respect to the elements
of the inverse matrix Ψ−1(θ).

Denote the normalization matrix by Ξ:

Ξ =

{
1
n · Id3 0

0 1
N .

}
. (52)

For an arbitrary differentiable nonsingular matrix functionA, the derivative of its inverse is given

by
[
A−1

]′
= −A−1 ·A′ ·A−1, therefore

∂

∂θj

{
[Ξ · ϕTD−1ϕ]−1

}
= −Ψ−1(θ) ·

{
∂

∂θj
Ψ(θ)

}
·Ψ−1(θ).

By replacing the elements of ∂
∂θj

Ψ(θ) with their absolute values we obtain a result similar to (51)

and it follows that, ∀0 ≤ j ≤ 3, the matrix ∂
∂θj

Ψ(θ) consists of uniformly bounded elements. We

have demonstrated that for all n large enough [Ξ · ϕTD−1ϕ]−1 and
∂

∂θj

{
[Ξ · ϕTD−1ϕ]−1

}
consist

of uniformly bounded functions of θ, thereby (49) and (50) both hold, if ∀r > 0,

lim
n→∞

Pn
θ∗

[
sup
B∗
r

∥Ξ ·Q · (z∗ − Eθ∗z
∗)∥ > r

]
= 0, (53)

and

sup
B∗
r

∥Ξ ·QB∗(Eθ∗z− Eθz)∥ < r ∀n ≥ Nr. (54)

The rest of the proof is a verification of (54) and (53) with the help of Lemma 4 and Lemma 49
and we proceed accordingly.

The ith summand in the first sum in (46) belongs to a family of equicontinuous uniformly
bounded functions in θ ∈ Θ:

mixi(θ
∗
0 − θ0 + (θ∗1 − θ1)xi)

αmi + β
∈
{
mx(θ∗0 − θ0 + (θ∗1 − θ1)x)

αm+ β

}
x∈X,

m∈Z+

;

in a similar way each of the remaining three sums can be put into correspondence with a family
of equicontinuous uniformly bounded functions that all equal zero when θ = θ∗. Therefore (54)
follows from Lemma 4.
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The product Q · (z∗ − Eθ∗z
∗) in (53) does not change if ∀1 ≤ k ≤ N +N(N + 1)/2 in each

row of Q we multiply the element that corresponds to z∗k by V ar
1
2
θ∗(z

∗
k) and simultaneously replace

z∗k − Eθ∗z
∗
k with

z∗k−Eθ∗z
∗
k√

V arθ∗ (z
∗
k)

in z∗ − Eθ∗z
∗. The families of functions that we associate with each

of the rows of the new matrix obtained from Q in this way are all equicontinuous and uniformly
bounded thanks to Assumption 1.3 (e.g.

mi

2(αmi + β)2
∈

{
m

3
2 (θ∗0 − θ̃0 + (θ∗1 − θ1)x) ·

√
α∗m+ β∗

(αm+ β)2

}
x∈X,

m∈Z+

∪
{
m(α∗m+ β∗)

(αm+ β)2

}
m∈Z+

, 1 ≤ i ≤ n,

for the third row), and the vector obtained from z∗ −Eθ∗z
∗ contains Pn

θ∗-centered mutually uncor-
related random variables with unit variances. Lemma 5 now establishes (53).

Corollary of the Proof. Define ρ∗ = ρ∗n = U(θ∗)− θ∗. For any r > 0,

lim
n→∞

Pn
θ∗ [∥ρ∗∥ > r] = 0, (55)

by (51) and (53).

Since ∥U(θ)− θ∗∥ ≤ ∥U(θ)−U(θ∗)∥+∥ρ∗∥, Theorem 8 and (55) imply that there exists an open
ball B∗, θ∗ ∈ B∗, such that the probability of U

∣∣
B∗ not being a contraction operator tends to zero

as n→ ∞. The fixed point of U
∣∣
B∗ satisfies

ϕTD−1(z− Ez) = 0. (56)

In view of (35), (56) is equivalent to

ϕB̃z+t̃(θ̃)DB̃z+t̃(θ̃)(z̃−Ez̃) = 0, (57)

where z̃ is given by (36) and B̃ by (38). The matrix ϕB̃z+t̃(θ̃)DB̃z+t̃(θ̃) is given explicitly by (41)
and it is a straightforward computation to verify that (57) is equivalent to

∇F · V −1 · ∇TF ·
{
θ0
θ1

}
= ∇F · V −1y,{

tr
{
V −1UUT

}
(y − F)TV −1UUTV −1(y − F)

}
,{

tr
{
V −1

}
= (y − F)TV −2(y − F)

}
,

F is a function of two variables: θ0 and θ1 (see (29)). The equations above are identical to the
likelihood equations presented on p.749 in [36].

12.5. LAN and LAM

Next we establish the Local Asymptotic Normality (LAN) and, in addition, prove the uniform
convergence to zero in Pn

θ∗- probability of the residual term in the asymptotic expansion. Throughout
this section we suppose that Assumptions 1.1–1.7 hold.

Theorem 9. Fix an arbitrary compact set T ⊂ R4 containing zero. Set

Ln(u) = ln[dPn
θ∗+Ξ1/2·u/ d P

n
θ∗ ], u ∈ T,

where Ξ is given by (52).
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Then the following decomposition (uniform LAN) holds:

Ln(u) = λTu− (1/2)uTJu+ ψn(u), (58)

where

λ ∼ N (0, J), J =


1/α∗ x̄/α∗ 0 0

x̄/α∗ x̄2/α∗ 0 0
0 0 1/2α∗ 0
0 0 0 1/2β∗

,


and

lim
n→∞

Pn
θ∗

[
sup
u∈T

|ψn(u)| > ρ

]
= 0 ∀ρ > 0. (59)

Remark 6. The LAN itself only requires that the residual term in (58) converges to zero point-
wise.

Proof. We use the multivariate version (valid for twice continuously differentiable functions) of
the expansion that was first published in 1797 by J.L.Lagrange:

F (x) = F (a) +∇F (a)(x− a) +
1

2
(x− a)T∇2F (a)(x− a)+

(x− a)T ·
{∫ 1

0
(1− t)

[
∇2F (a+ t(x− a))−∇2F (a)

]
dt
}
· (x− a), (60)

where ∇F (x) is the gradient of F (x) and ∇2F (x) =∥ ∂2

∂xi∂xj
F (x) ∥i,j .

The proof of Theorem 9 is based on applying the above decomposition to Ln(u) when a = 0
(note that Ln(0) = 0).

We begin by demonstrating that the first two terms in (58) are the limits of ∇LN (0)u and
(1/2)uT∇2LN (0)u respectively; we then represent the residual term in an integral form (cf. (60))
and observe that (59) follows from a stronger statement which we prove with the help of Lemmas
4 and 5: ∀ρ > 0, ∀i, j such that 0 ≤ i, j ≤ 3,

lim
r→0

lim sup
n→∞

Pn
θ∗

[
sup

θ∈Br(θ∗)

∣∣∣∣(∇2Ln(Ξ
− 1

2 [θ − θ∗])−∇2Ln(0)
)
i,j

∣∣∣∣ > ρ

]
= 0, (61)

here Br(θ
∗) is a ball of radius r centered at θ∗,

(
∇2Ln(u)

)
i,j

= ∂2/∂θi∂θjLn(u). Prior to proceeding
in accordance with this plan we pause to prove the following useful result, which can also be found
elsewhere:

Lemma 6. Let ξ = (ξ1, ... , ξn)
T ∼ N (0, V ). Then

V ar[tr
{
ξ · ξT

}
] = 2 · tr

{
V 2
}
. (62)

Proof of the Lemma. When V is diagonal (i.e. when the components of ξ are mutually independent),
(62) is established by direct computation. The general case follows since for any orthogonal O and
an arbitrary n× n matrix A we have tr

{
OT ·A ·O

}
= trA.

Let V , just like in (31), denote Covn,θ(y) and set G = Gn = UUT = diag(1m1 · 1Tm1
, . . . , 1mn ·

1Tmn
), then V G = GV and H2

i = miHi (Hi = 1mi · 1Tmi
). In this notation, ∀θ ∈ Θ

dPn
θ = (2π)−

n
2 |V |−

1
2 · e−

1
2
(y−F)TV −1(y−F)dy1 . . . dyN . (63)
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Throughout the remainder of the proof we apply repeatedly the following well-known identities
that hold for any two non-singular differentiable matrix functions A and B such that AB and BA
are both defined:

d
{
A−1

}
= −A−1 · {dA} ·A−1, d ln |A| = tr

{
A−1 · dA

}
, tr {AB} = tr {BA}. (64)

The above identities combined with (63) allow us to list the components of ∇Ln(0):

∂

∂θ0
Ln(0) =

1√
n
1TN · V ∗−1 · (y − F∗),

∂

∂θ1
Ln(0) =

1√
n
xT · V ∗−1 · (y − F∗),

∂

∂θ2
Ln(0) = − 1

2
√
n

{
(y − F∗)TV ∗−1GV ∗−1(y − F∗)− tr(GV ∗−1)

}
,

∂

∂θ3
Ln(0) =

1

2
√
N

{
(y − F∗)TV ∗−2(y − F∗)− trV ∗−1

}
, (65)

where x = ∂
∂θ1

F
∣∣
θ∗
. All expressions in (65) are centered random variables. Our analysis of the

asymptotics of ∇Ln(0) · u starts with a verification of lim
n→∞

Covθ∗(∇TLn(0)) = J . Here we resort

essentially to the same techniques employed in section 12.4.

Let O be the orthogonal map that diagonalizes V (see (31) and (32)), then

Covθ∗(
∂

∂θ0
Ln(0),

∂

∂θ1
Ln(0)) =

1

n
Eθ∗tr

{
(OT 1N )TOTV ∗−1Oy∗y∗TOTV ∗−1O(OTx)

}
=

1

n
tr
{
(OT 1N )TOTV ∗−1O(OTx)

}
=

1

n
Σn
i=1

xi
α∗ + β∗/mi

→ x̄

α∗

as n→ ∞.

In a similar fashion one can show that Covθ∗(
∂

∂θ2
Ln(0),

∂
∂θ3

Ln(0)) → 0 as n→ ∞.

To compute variances for ∂
∂θ2

Ln(0) and ∂
∂θ3

Ln(0) we apply Lemma 6 to Gaussian vectors

G
1
2V ∗−1(y − F∗) and V ∗−1(y − F∗) respectively:

V arθ∗ [
∂

∂θ2
Ln(0)] =

1

2n
tr
{
GV ∗−1GV ∗−1

}
and V arθ∗ [

∂

∂θ3
Ln(0)] =

1

2N
tr
{
V ∗−2

}
,

which go to
1

2α∗ and
1

2β∗
as n→ ∞. After careful inspection of the remaining terms one concludes

that J is indeed the limit of the covariance matrix of the vector ∇TLn(0). Set y
∗ = OT · (y−F∗).

We construct a collection of sequences of mutually independent random vectors
{
{ξn,i}ni=1

}∞
n=1

,

ξn,i = Cov
− 1

2
θ∗
(
∇TLn(0)

)
×



√
miy

∗
m1+...+mi√

n(α∗mi+β∗)√
mixiy

∗
m1+...+mi√

n(α∗mi+β∗)

1
2
√
n

mi
α∗mi+β∗

(
y∗2m1+...+mi
α∗mi+β∗ − 1

)
1

2
√
N

(
1

α∗mi+β∗ (
y∗2m1+...+mi
α∗mi+β∗ − 1) + 1

β∗Σli−1<k<li(
y∗2k
β∗ − 1)

)
 ,

1 ≤ i ≤ n, li = m0 + . . . +mi and m0 = 0 by definition. Since ∀n Σn
i=1ξn,i = Cov

− 1
2

θ∗
(
∇TLn(0)

)
·

∇TLn(0), a modification of Lindeberg-Feller’s Theorem implies that ∇TLn(0) → L (N (0, J)). Then

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 18 № 4 2018



288 MALYUTOV

by the Kolmogorov’s famous lifting theorem (on existence of a stochastic processes), ∇TLn(0) ·u→
λTu, λ ∼ N (0, J), and we are done with the first term.

The components of ∇2Ln(0) are treated similarly. By Lemma 6 the variances of

∂2

∂θ22
Ln(0) =

1

2n

[
tr
{
GV ∗−1GV ∗−1

}
− 2(y − F∗)V ∗−1GV ∗−1GV ∗−1(y − F∗)

]
tend to zero as n→ ∞, thereby they converge in Pn

θ∗-probability to −1/2α∗ and −1/2β∗, which are
the limits of their expectations. Likewise we notice that the variances of the centered expressions

∂2

∂θ0∂θ2
Ln(0) = − 1

n
1TNV

∗−1GV ∗−1(y − F∗),

∂2

∂θ0∂θ3
Ln(0) = − 1√

nN
1TNV

∗−2(y − F∗),

∂2

∂θ1∂θ2
Ln(0) converge to zero.

The rest of the matrix elements of ∇2Ln(0) can be computed directly by applying orthogonal
transformation O, and it follows that (1/2)uT∇2Ln(0)u converges to −(1/2)uTJu, hence we are
done with the second term.

It is only left to verify (61), which is done by repeated applications of Lemmas 4, 5, and 6. The
proof of (61) is carried out in complete analogy with the proof of (53)–(54) and the analysis done
for ∇2Ln(0) above and is therefore omitted.

To prove (58) we need the following strengthening of (55) (where J
1/2
θ∗ is defined in the statement

of Theorem 9

lim
n→∞

En
θ∗

[
f(J

1/2
θ∗ Ξ−1/2ρ∗)

]
=

∫
f(u)(2π)−2e−|u|2du (66)

for any continuous bounded function f(·) on R4 (weak convergence to the standard normal dis-
tribution). This statement follows from multidimensional Lindeberg-Feller theorem [42] and the
computations of section 12.4.

The LAM property of θ1 for bounded loss functions uniformly over qualified initial guesses θ0

follows from theorem 3.4.2 of [28], we outline here the main steps of its derivation skipping the
more involved proof of the convergence of moments of any order to the moments of the limiting
distribution ( which is also true for our gaussian model). We have

θ1 − θ∗ = U(θ0)− θ∗ = ρ∗ +R(θ0).

Set An = [ϕTD−1ϕ]−1ϕTD−1. Then by the integral Taylor expansion of the first order (cf. (60))

Ξ−1/2R = R1 +R2,

R1 = Ξ−1/2

∫ 1

0

∂

∂θ
{An · (z− E∗z)}

∣∣
θ∗+t(θ0−θ∗)

· (θ0 − θ∗)dt,

R2 = Ξ−1/2An(θ
0) ·
∫ 1

0

[
ϕ(θ0 + t(θ∗ − θ0))− ϕ(θ0)

]
· (θ∗ − θ0)dt.

Taking into account the boundedness in probability of Ξ−1/2(θ0 − θ∗), we obtain:
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lim
n→∞

Pn
θ∗

[
sup
B∗
r

∥R(θ0)∥ > r

]
= 0.

This estimate and (66) imply (27) since the maximized expression in the left-hand side of the
latter does not depend on θ∗ ∈ Θ, whereas the residual terms are uniformly negligible.

12.6. Asymptotically optimal Design

The inverse covariance matrix J of the limiting distribution for the vector

([
√
n(β̂0 − β), (β̂1 − β1), (â− a)],

√
N(b̂− b))

is given at the line just below (58). We see that it does not depend on the mutual relationship
between m1, . . . ,mI as long as min{m1, . . . ,mI} → ∞ and Assumption 1.7 holds. Particularly, the
part of J corresponding to the parameters θ0, θ1 is the same as for n independent homoskedastic
observations of the straight line regression model at the points xi, i = 1, . . . , I.

Remark 7. Our asymptotic design results differ drastically from those for ANOVA models with
deterministic parameters ([18]), where balancedness plays the key role.

Remark 8. Our asymptotic theory can be easily generalized to the case of general linear model
for the mean Xγ of our mixed model, where

X =


f1(x1) . . . fp(x1)
. . . . . . . . .

f1(xn) . . . fp(xn)

 , fi : X → R1,

are continuous functions on a compact subset X of Rq.

Remark 9. Designs optimizing a convex differentiable function Φ(J−1) by choosing x1, . . . , xI
can be easily found (at least numerically) by the standard methods known for homoskedastic
independent measurements (see, e.g. [8].

13. MULTISAMPLE MIXTURE PARAMETER ESTIMATION

13.1. Introduction

This section was applied to a study of size and age structure of a fish population on the basis of
length-frequency analysis. Because of a short reproductive season in cold and temperate waters, the
fish population may be considered as a mixture of discrete generations. Each generation has usually
a unimodal distribution of body length. Therefore, a length-frequency histogram for a sample from
the population may be treated as the one obtained from a mixture of the component distributions.
Field data usually consist of about 100 samples. Samples from distinct locations within the area of
population are not homogeneous spatially because the generations are poorly mixed within the area.
For example, young generations usually predominate in coastal waters while mid-aged generations
predominate in deeper waters.

A closely related application of the model occurs in latent structure analysis, particularly in the
social science (Goodman (1974)). A similar problem was considered by Skene (1978), who studied
the sets of data, each from a different group of patients, assuming that the component densities are
the same for all groups but that the sets of mixing weights may differ from group to group. Maximum
likelihood estimation using the EM algorithm was suggested. However, asymptotic properties of the
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estimates were not discussed. It is unclear whether the approach based on estimation of weights
of classes in each sample provides consistent parameter estimates because the number of classes
weights is increasing proportionally with the number of samples.

13.2. Method

Let us consider N samples. Each sample is represented by a histogram. Let J-dimensional vector
Yi describe the i-th histogram of J group intervals as a mixture of K components, its j-th element
is

yj,i =

K∑
s=1

pj,s(θ)csi + uj,i, j = 1, . . . , J, i = 1, . . . , N.

Here csi is the weight of the s-th component density in i-th histogram, pj,s, s = 1, . . . ,K, is the
multinomial probability depending on unknown θ ∈ RM ; uj,i is a random error. The vector form
of the above formula is the following

Yi = P (θ)Ci + ui, i = 1, . . . , N,

where Ci = (csi, s = 1, . . . ,K), and the matrix P (θ) with entries pj,s(θ), j = 1, . . . , J, s = 1, . . . ,K,
is assumed to have rank J − 1.

Under fixed Ci, the mean E(ui|Ci) = 0, and its conditional covariance is

Cov(ui|Ci) = 1/ni[diag(P (θ)Ci)− (P (θ)Ci)(P (θ)Ci)
T ],

where numbers ni of observations the i-th histogram is based on are assumed to be independent
identically distributed (i.i.d.) random with mean n (independent of ui, i = 1, . . . , N). It is straight-
forward that Cov(ui|Ci)1 = 0, where 1 is the vector with all components 1.

From now on consider Ci, i = 1, . . . , N, as K-dimensional i.i.d. multinomial random variables
with the common mean π(α) = E(Ci), α ∈ Rq, q < K, describing the relative proportions of gener-
ations (in the framework of the example from the fishery research studied by us). The covariances
of Ci are

Di =

[
diag(π)− ππT

]
.

Thus, we suppose that all the weight vectors Ci, i = 1, . . . , N, are drawn from the same multi-
nomial distribution with K classes. This assumption provides an opportunity to study asymptotic
properties of the model depending on a finite number of real-valued parameters βT = (θT , αT ).

As compared to the related approach of [45], the ages of populations correspond to the latent
classes, whereas his assumption on independence of symptoms from the latent classes is weakened
by our multinomial distribution assumption. Instead of Bayesian scheme we study estimation in
the parametric model.

Denoting ri = Ci − π, we obtain the multivariate regression model depending on unknown
parameters βT = (θT , αT ):

Yi = P (θ)π(α) + ei, (67)

where ei = P (θ)ri + ui are independent random vector-errors with

E(ei) = 0, (68)
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and Wi := Cov(Yi) is given by

(1− 1/ni)P (θ)[diag(π)− ππT ]P T (θ) + n−1
i diag[P (θ)π]− P (θ)ππTP T (θ). (69)

The last expression and the equality Wi1 = 0 follow from the identity

Cov(Yi) = ECov(Yi|Ci) + CovE(Yi|Ci),

and the mutual independence of vectors ui, ri and ni.

The equations (67) to (69) constitute a multivariate regression model. Parameters β are assumed
to be identifiable given the common mean. Singular covariances of vector-observations depend on
unknown parameters. This is an example of Q-model studied in sections 3–9. The REAGAN al-
gorithm with the weights taken as a smooth g-inverse of the covariance matrix (69) in Q-model
possesses the same optimal asymptotic properties as the optimally weighted LS estimator with the
known covariance structure (section 3). The t-th step of the REAGAN consists of finding the best
linear unbiased estimate βt − βt−1 for the weighted LS fitting residuals of the previous approxima-
tion Yi − P (θt−1)π(αt−1) by F (βt−1)(βt − βt−1), i = 1, . . . , N, where F (β) = ∂P (θ)π/∂β and the
weight matrices are the generalized inverses (g-inverses) W−

i for Wi satisfying the equation

WiW
−
i Wi =Wi,

see for example [40], section A.12. According to their theorem A.77, (where their nonsingular should
be replaced with singular to correct the obvious typo) the matrix Ωi = (Wi+1×1T )−1 is a smooth
g-inverse to Wi because 1 is the only vector in the null space of Wi. Putting Ωi as weight matrices
of the multivariate REAGAN, we get a desired estimate β̂ = limβt (as t → ∞) of the true value
β∗ for the parameter β. It is proved in section 3, that this limit exists in Probability as N → ∞, it
is consistent for the initial guess being sufficiently close to β∗, and

√
N(β̂− β∗) has asymptotically

normal distribution with zero mean and covariance matrix

A = [ lim
N→∞

N−1
N∑
i=1

F T (β∗)ΩiF (β
∗)]−1.

Remark 10. If the distribution of ni depends on N in such a way that ni → ∞, i = 1, . . . , N, as
N → ∞, then the normalization rates are different for θ and β, cf. section 12.

Remark 11. If rankP (θ) < J − 1, we can still find a smooth g-inverse to Wi for running the
REAGAN, using the method developed in [39]. Namely, it is enough to compose a matrix H with
columns constituting the base in the null space of P (θ). Then (Wi +HHT )−1 is a g-inverse to Wi

according to [39], statement 2 of 4a.3.

If the initial guess β0 is
√
N -consistent, then the first iteration β1 is already asymptotically

normal with the same parameters. It should be emphasized that our method of estimation based
on fitting two first moments of distribution often uses asymptotically all information on unknown
parameters contained in the data, particularly for a regular curved multinomial (and in general for
any regular curved exponential family of distributions) (see our section 10). Namely, the estimate
β̂ asymptotically approaches the maximum likelihood estimate in the case, when the family of
distributions depending on β is a regular curved exponential one.

14. DENSITY PARAMETER ESTIMATION FROM STRATIFIED SAMPLE

Our schematic sketch of parameter estimation from stratified sample follows [27]. Suppose the
range of continuous univariate distribution density f((x), θ) w.r.t the Lebesgue measure dx is split
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into many strata such that the limiting smooth normalized distribution of the repeated sample
νNi from stratum (bin) SN

i also converges to f(·), θ together with its smooth derivative w.r.t.
θ. Occupancy numbers νNi follow Multinomial distribution with means µNi =

∫
SN
i
f(x)dx and

covariance function

V (θ) = N−1[diag{µN} − µ× (µN )T ].

We use the same g-inverse to V (θ) as in section 13 and define the REAGAN procedure accord-
ingly:

θs+1 = ΘνN (θ
s) = (ΦTV −Φ)ΦTV −(νN − µN ),

matrix Φ = ∂µN (θ)/∂θ.

Proof of the REAGAN convergence and asymptotic normality in [27] uses the
√
νN -transforma-

tion of occupancy numbers which converts their covariance matrix asymptotically into

QN = (I−
√
µN
√
µN

T
).

Operator QN projects νNi orthogonally to vector
√
µN , Q2

N = QN , ||QN || = 1. This means
informally that we work with the uniform distribution on the intersection of the circumference
with the positive octant after this transformation. The same transformation converted the two-
allelic R. Fisher’s genetic drift asymptotically into an isotropic Brownian motion on the same part
of the circumference. This enabled the R. Fisher’s simplified asymptotic analysis, see e.g. [24].

In the limit to an infinitesimal stratification, the covariance matrix approaches the Fisher’s lower
bound

[
∫
∂
√
f(θ)∂

√
fT (θ)]−1/N confirming the asymptotic efficiency of our estimator.

15. M-ESTIMATES AND SMALL ERROR CASES

15.1. ∆-method

The class of gaussian Q-models with small noise γδ, γ → 0, Covδ = D, is obviously asymptoti-
cally closed w.r.t. smooth transformations g(·) of responses y due to the well-known ∆-method [39].

Namely, the principal term of the mean of transformed gaussian approximation is g(µ), while
the principal in γ term of the Covariance is γ2∂gD∂T g which is also a Q-model.

15.2. M-estimates

Let us point out that REAGAN for a Q-model can be easily made more robust, i.e. ignoring
or almost ignoring a certain percentage of outliers and having a higher breakdown point. For this
purpose, it is sufficient to multiply the weight matrix of our Q-model by a factor which is decreasing
as ∥yi − µi(θ)∥ → ∞. Despite the fact that now we can not consider the weight as Cov−1[yi],
the method of proving asymptotic properties of estimators stays the same. The efficiency of such
procedures has been studied in detail in the theory of M -estimators[14].

15.3. Small Errors in Controllable Explanatory Variables

The classical Linear Models (LM) deal with precisely known x-predictors. Under more real-
istic admission of small unbiased random errors in controllable predictors, the LS method is no
more consistent due to additional bias and variance of y-observations depending on the slopes of
regressors. An appropriate Q- model and REAGAN iterative estimation saves the situation.
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Early references are [4, 7], where consistent suboptimal algorithms were constructed without
rigorous convergence of iterations proof.

A more rigorous [49] considers observations series such that the corrections’ order of magnitude
is possible to estimate for finite samples.

Given m-vector θ∗ of non-random parameters and N -vectors y, h, δ of observations as well as in-
dependent random errors in predictors and responses η(ui, θ∗) with twice continuously differentiable
η(·), consider model

yi = η(ui + hi, θ) + δi, i = 1, . . . , N,

where ui, hi are respectively fixed and random p-vectors, Eh ≡ 0, Eδ ≡ 0, the normalized design
εN of predictors weakly converges to measure ε such that the limiting information matrix M(θ∗)
introduced further by (70) is non-singular.

Also, assume that
√
ΓN1/6h = ν converges to a limiting non-degenerate distribution which does

not depend on N and has four finite moments.

The second order Taylor decomposition gives (denoting second derivative over xx as ηxx, etc.):

Eyi = η(ui, (σ
2 + ∂η(ui, θ∗)

T∂η(ui, θ∗)ΓN
−1/3
∗ ) + ηxx(ui, θ∗)/2 +O(N−1),

V ar(yi) = σ2 + ∂η(ui, θ∗)
T∂η(ui, θ∗)ΓN

−1/3 +O(N−2/3.)

Introduce

ψ(ui, θ) = η(ui, θ) + ηxx(ui, θ)/2 +O(N−1),

λ−1 = σ2 + ∂η(ui, θ)
T∂η(ui, θ)ΓN

−1/3,

F T (u, θ, γ) = [∂ψθ, ∂ψγ ],

M(θ, γ) =
∑

F (ui, θ, γ)F
T (ui, θ, γ)λ(ui, θ, γ). (70)

Consider a REAGAN iterative algorithm Ay(·)

(θs+1, γs+1) = Ay(θ
s, γs),

where operator Ay means Argmin
∑N

1 (yi − ψ(ui, θ, γ)
2λ(ui, θ

s, γs).

The methods described in sections 3–9 enable proof in [49] of the convergence in Probability,
asymptotic normality and local Minimaxity of estimates in the class of bi-linear updates via Ay(·).

16. DISCUSSION

A sample of applications displayed above shows that Quasilinear models constitute a flexible
broad extension of Linear models admitting an effective analysis.

Much more restrictive Generalized Linear models [37], when applicable, construct a bridge be-
tween the REAGAN estimates for Q-models and iterative methods of Maximum Likelihood.
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