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Abstract—My paper IP, 19:1 2019 contained the penultimate version of Appendix 2, Statistical
simulation of Change Point detection, instead of the last version of Appendix 2 submitted on
December 13, 2018. Below is the version of December 13 extended with the case of estimating
parameters of the same SCOT emissions model.
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1. INTRODUCTION

Stochastic COntext Tree (abbreviated as SCOT) is a m-Markov Chain (m-MC) with every state
of a string independent of the symbols in its more remote past than the context of length determined
by the preceding symbols of this state. A parallel super-fast fitting and asymptotically optimal
inference in a sparse SCOT model including the nonparametric homogeneity test are described in
our previous papers. [1, 4] and finally [2] established the equivalence of a perfect memory sparse
SCOT to 1-MC with state space consisting of the collection of m-MC contexts which we consider
as the new alphabet A of cardinality A. For not perfect memory sparse SCOT, its perfect memory
sparse envelope (also studied in [2]) plays this role.

The evaluation of log-likelihoods under SCOT requires sophisticated software and cumbersome
calculations. Thanks to the above SCOT perfect memory reduction to a 1-MC with enlarged state
space, its statistical theory ([3]) simplifies. Statistical simulation simplifies, if the SCOT memory
structure is established up to probabilities involved. This is done in our last section for the HMM’s
‘Change Point’ (change of state z) detection. Observed random variables xi depend only on current
hidden state zi modeled as a Markov Chain. If the SCOT memory structure is unknown, then we
would need to apply the methodology of [3, 4] in full strength.

Plot 1. HMM-SCOT scheme
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We model all regimes as long SCOT strings. We call HMM zi SLOW, if the mean time that
HMM keeps staying in the same state is proportional to a large parameter l in all states, while
the sample size is kl, k → ∞. Emissions shown in dark in the above Fig. are modeled as strings
of MC over the space of contexts, transition matrix depending on the current HMM state. The
emissions xi over the alphabet of SCOT contexts are assumed ergodic, different for all states of
HMM, expectations are taken everywhere under their stationary distributions. Our segmentation
method is a combination of preliminary online change point (CP) detection with its subsequent
offline Maximal Likelihood update.

2. CP DETECTION FOR SCOT MODELS KNOWN BOTH BEFORE AND AFTER CP

Simulation was made by PhD student Jiewei Feng.

i) Let zt indicate the state of Hidden Markov Model with two states 0 or 1 at time t.

The transition probability of this Hidden Markov Model is

P (z1 = 0) = 1, P (zt = 1|zt−1 = 0) = 0.001, P (zt = 1|zt−1 = 1) = 1.

So the Hidden Markov Model starts in state 0 and then has one change point after some time (the
state changes from 0 to 1) and will never go back to state 0 again.

Denote CP as the least t such that zt = 1. Then

P (CP = i) = 0.999i−1 ∗ 0.001 for i > 1.

ii) Define SCOT under state 0 of HMM (model 2ii in [1], p. 86): Let xt act under the rule of
‘increasing SCOT’ if zt = 0, that is

x0 = −1, x1 = 0.

If xt−1 = −l where −l is the left boundary, then

xt = −l + 1.

If xt−1 = l where l is the right boundary (we assume l is large enough such that we will not reach
the right boundary in limited time), then

xt = l − 1.

If for the greatest k < t such that xk ̸= xk−1, we have xk = xk−1 + 1 and xt−1 ̸= 0, then

xn =

{xt−1 + 1 with probability 0.8,
xt−1 with probability 0.1,
xt−1 − 1 with probability 0.1.

If for the greatest k < t such that xk ̸= xk−1, we have xk = xk−1 − 1 and xt−1 ̸= 0, then

xt =

{xt−1 − 1 with probability 0.8,
xt−1 with probability 0.1,
xt−1 + 1 with probability 0.1.

iii) Define ‘decreasing SCOT’ under state 1 in Hidden Markov Model:

Use the same model as 2 ii) with probabilities (0.4, 0.3, 0.3) (in the ‘increasing SCOT’ probabil-
ities are (0.8, 0.1, 0.1)).
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Fig. 2. Model 2(ii) with l = 5.

Fig 3. Simulated data.

We simulate HMM zt and SCOT emissions, detect the CP online and offline following the
algorithm of [3] on the simulated data set and find how close our estimates are to the real CP. In
this simulation, the sample size is 1000 (i.e. t = 1, ..., 1000 ).

The next picture shows the generated observations xt. The actual change point is 662.

Online change point detection:
a) The probability of getting x1, x2, ..., xt:

P (x1, x2, ..., xt|CP = i) =
t∏

n=3

P (xn|xn−1, CP = i),

P (x1, x2, ..., xt) =

t∑
i=2

P (x1, x2, ..., xt|CP = i)P (CP = i) + P (x1, x2, ..., xt|CP > t)P (CP > t).

Then the log-likelihood of x1, x2, ..., xt is lt = logP (x1, x2, ..., xt).
b) Average log-likelihood:
Choose the window size of 10 points, then the average log-likelihood from the window (xt, . . . xt+9)
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is

¯(lt) = 1/10

9∑
k=0

l(t+k).

c) Calculating the trend Lt of the data:
We use the Least Squares estimate for model lk = ak+ b with data points l1, l2, ..., lt, then Lt = a.
d) getting critical point:
Let C denote the critical point, by using the first hundred data points, we have first 100 Lt

′s.
Define

V (t) = | ¯(lt)− Lt|. (1)

Then let

C = 1.2 max
51≤t≤150

V (t). (2)

e) Online change point estimate:
The estimator is the least t such that | ¯(lt)− Lt| > C.
Simulation result

Fig 4. Online detection.

The above picture describes the statistic V (t) as time t changes (refer to equation (1)). The
horizontal line indicates the critical value(refer to equation(2), in this case 8.801). We find that the
first point that exceeds this critical value is at t = 566 where the real change point is 662.
Offline change point detection:
we use maximum likelihood estimator (MLE) as our estimate.
Define

L(θ) = L(x1, ..., x1000; θ) = P (x1, ..., x1000|CP = θ), (3)
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where P (x1, ..., x1000|CP = θ) can be deduced from similar procedure introduced in online change
point detection. Then the MLE θ0 is

θ0 = arg max
1≤θ≤1000

L(θ).

Simulation result:

Fig. 5. Offline detection via ML method.

The above picture gives a plot of the likelihood with respect to all possible values of change
points (i.e. L(y1, ..., y1000; θ)) (refer to equation (3)). At t = 664 this likelihood achieves its maxi-
mum, thus it is our MLE. It is very close to the actual change point 662.

3. SIMULATION UNDER ESTIMATED PARAMETERS OF MODEL 2II

Consider the CP detection with unknown parameters of the model 2.ii. We still generate data
using the same parameters (0.8, 0.1, 0.1) and (0.4, 0.3, 0.3) to first estimate these parameters by
simulated data, then use this result to repeat the procedure introduced in the last model and find
the change point.

The distribution of SCOT without CP (i.e. under permanent state of HMM) becomes:

x0 = −1, x1 = 0.

If xt−1 = −l where −l is the left boundary, then

xt = −l + 1.

If xt−1 = l where l is the right boundary (we assume l is large enough such that we will not reach
the right boundary in limited time), then

xt = l − 1.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 19 № 2 2019



LETTER TO EDITORS 175

If for the greatest k < t such that xk ̸= xk−1, we have xk = xk−1 + 1 and xt−1 ̸= 0, then

xn =

{xt−1 + 1 with probability p,
xt−1 with probability q,
xt−1 − 1 with probability 1− p− q.

If for the greatest k < t such that xk ̸= xk−1, we have xk = xk−1 − 1 and xt−1 ̸= 0, then

xt =

{xt−1 − 1 with probability p,
xt−1 with probability q,
xt−1 + 1 with probability 1− p− q.

In this process, we assume boundary l is sufficiently large so that xi would not reach the bound-
ary.

To estimate q, define sequence of random variables wt := xt+1 − xt, then wt ∈ {−1, 0, 1}. Take
{x0, x1, x2, x3, ..., x101} as our training data, we get the sequence {w0 = 1, w1, w2, ...w100}. Let n1

be the number of times that wt = 0, then our MLE for q is n1
100 (similar to parameter estimation

for the Bernoulli distribution)

Using the same sequence {w0 = 1, w1, w2, ...w100}, we delete all the data for which wt = 0, and
get a sub-sequence {w′

0 = 1, w′
1, w

′
2, ...w

′
100−n1

}. Further, introduce sequence ut := w′
t − w′

t−1. We
have ut ∈ {−2, 0, 2}. Let n2 be the number of times such that ut = 0, then our MLE for q is n2

100 .

The way to understand the procedure is the following : q is the probability that xt stays at
its location , p gives the probability that xt keep moving in the same direction as its most recent
movement. And 1− p− q gives the probability that it moves in the opposite direction as its most
recent movement. These choices are independent. So the frequency of specific choice (stay, same
direction, or opposite) is the maximum likelihood estimator of the parameter. The construction of
sequence {wt} and {ut} extract the information of choices from the original data.

Example of the sequence described above:

{x0, x1, x2, x3, ..., x101} = {−1, 0, 0, 1, 0, 0, 1, 2, 3, 2, 1, ..., z101}
↓

{w0 = 1, w1, w2, ..., w100} = {1, 0, 1,−1, 0, 1, 1, 1,−1,−1, ..., w100}
↓

{w′
0 = 1, w′

1, w
′
2, ..., w

′
100−n1

} = {1, 1,−1, 1, 1, 1,−1,−1, ..., w′
100−n1

}
↓

{u1, u2, u3, ..., u100−n1} = {0,−2, 2, 0, 0,−2, 0, ..., u100−n1}

By assuming the change point only happens after considerable time (slow HMM!), we can take
the first 200 data points from the simulated x-string used for change point detection to train the
parameter under zt = 0. Similarly we can take the last 200 data points in the sequence to estimate
parameters under zt = 1.

Note that in the second case, the sequence we have under zt = 1 is

{zk−n−1, zk−n, zk−n+1, zk−n+2, zk−n+3, ..., zk},

where k is the size of the whole sequence used for change point detection and n is the number of
data points for training the SCOT. Hence unless we know z0 = −1 and z1 = 0 which give us the
initial direction, if the sequence begins with the condition zk−n−1 = zk−n, we lose the information
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about the initial direction. Because of this, we need to find when the sequence first moves in either
of directions before time k − n.

We temporarily define zk−n−1 := zk−n − 1 if the sequence first moves in either of directions
before time k − n is increasing, and zk−n−1 := zk−n + 1 if the opposite happens. Then using the
same procedure as discussed before we can estimate the parameters.

3.1. Simulation of CP detection under estimated SCOT parameters

By creating 200 data points for each of the SCOT before and after the change point with
parameters (0.8, 0.1, 0.1) and (0.4, 0.3, 0.3), we get the following estimates: (0.805, 0.095, 0.1) and
(0.415, 0.285, 0.3).

We use the above estimation to find the change point in the same sequence we used before and
get the following result.

Fig. 6. Online detection with estimated parameters

In online change point detection, the above picture describes the statistic V (t) as time t change
(refer to equation (1)). The horizontal line indicates the critical value(refer to equation(2), in this
case 8.8321)) .We find that the first point that exceeds this critical value is at t = 566 where the
real change point is 662 (recall that our online CP-estimate under the true parameter was 568).

In offline change point detection, the above picture gives a plot of likelihood with respect to
different values of change points (i.e. L(y1, ..., y1000; θ)) (refer to equation (3)). At t = 664 this
likelihood achieves its maximum, thus it is our MLE. It is very close to the actual change point
662. (Recall that our offline estimation using true parameter gives the same CP estimate 664).
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Plot 7. Offline detection with estimated parameters.
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