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1. INTRODUCTION

Stochastic COntext Tree (abbreviated as SCOT) ism-Markov Chain (m-MC) with every state of
a string independent of the symbols in its more remote past than the context of length determined
by the preceding symbols of this state. A parallel super-fast fitting and asymptotically optimal
inference in a sparse SCOT model including the nonparametric homogeneity test are described in
our previous papers. An alternative apparently less powerful and flexible model is Markov Chain
of Conditional Order, see [17].

[28] and finally [35] established the equivalence of a perfect memory sparse SCOT to 1-MC with
state space consisting of the collection of m-MC contexts which we consider as the new alphabet
A of cardinality A. For not perfect memory sparse SCOT, its perfect memory sparse envelope
(also studied in [35]) plays this role. The perfect memory condition does not depend on prediction
probabilities assigned to the leaves of SCOT.

Thanks to above SCOT perfect memory reduction to a MC with enlarged state space, a substan-
tial part of the present paper deals with statistical properties of 1-MC. Evaluation of log-likelihoods
under SCOT requires sophisticated software and cumbersome calculations. The statistical theory
of this processing is miraculously supported by the classical 1-MC theory with somewhat larger
alphabet size A under perfect memory.

Markov regime switching models remain enormously popular in speech recognition, economics,
finance, etc. Nonparametric segmentation in switching models without probability assignment of
jump moments is in many papers by Brodsky and Darkhovsky. We model all regimes as long SCOT
strings. Our segmentation method is a combination of preliminary online change point detection
with its subsequent offline Maximal Likelihood update.

1.1. HMM model for speech recognition

Speech is modeled (Baum et al) as a sequence of emissions—phonems— random variables xi.
Elements of observed sequence xi depend only on current hidden letters of text zi which is modeled
as a Markov Chain.

We refer to zi as hidden states, see the Figure below. Inference about the parameters of the
model and hidden MC uses only the observed xi, i = 1, . . . .
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The fast Baum-Welsh fitting HMM parameters has been successfully applied to speech recogni-
tion [25]. Its application to Genome modeling [11,34] by assigning IID emissions to the same part of
Genome seems not justified. Markov switching models generalize HMM by considering parametric
regimes ([9,16]). Nonparametric segmentation in switching models without probability assignment
of jump moments is in many works by Brodsky and Darkhovsky, see [6]. We develop a model of
slow HMM with SCOT emissions (SCOT-HMM) which seems a more realistic model for Genome,
economics, analysis of combined authorship of literary works, or financial time series with piece-
wise volatility. We discuss in [20,23] well-SCOT-approximation of mixing sequences. Thus, mixing
emissions are actually considered.

Our segmentation method is a superposition of preliminary online change point detection with
its subsequent offline Maximal Likelihood update. The online part is a nontrivial modification of
IID case in [18] using alternative risk function to that in [29].

1.2. Slow HMM-SCOT emissions model

We call HMM zi SLOW, if mean time that HMM keeps staying in the same state is proportional
to a large parameter l in all states, while the sample size is kl, k → ∞. Emissions shown in dark
in the following Fig. are modeled as STRINGS of MC over the space of contexts with transition
matrix depending on the current HMM state.

Remark. Our HMM-SCOT model has nothing in common with VLMCHMM which analyzes
independent emissions under a SCOT model for HMM [10].

The emissions MC xi over the alphabet of SCOT contexts are assumed ergodic, different for all
states of HMM, expectations are taken everywhere under their stationary distributions.

Fig. 1. HMM-SCOT scheme.

2. AUXILLIARY MATERIAL

Large Numbers Law (LLN) for additive state functions were first derived in [22], 1906. The MGF
derivation of exponential convergence rate in LLN for more general additive transition functions
(ATF) and their asymptotic Normality (AN) use the powerful classical

Theorem of Perron (PT). Any quadratic matrix with all entries positive has a positive simple
eigenvalue R called its spectral radius, which is strictly greater than the moduli of the rest of the
spectrum, R’s corresponding eigenvector has all positive coordinates.

2.1. MGF, exponential rate in LLN and Asymptotic Normality of ATF

Let 1B be B-column consisting of ones. For a real number t, introduce a new matrix P (t) with
entries pjk(t) = pjk exp(tf(j, k)) and start with an elegant expression of Sn’ moment generating
function (MGF):

Fn(t) = Eπ exp(tSn) = πPn(t)1. (1)

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 19 № 1 2019



62 MALYUTOV

The proof with small gaps of insufficient for our aims particular case of f(·, ·) depending only
on its second argument (additive state function (ASF)) is displayed in [30], pp. 230-232, and er-
roneously attributed there to A. A. Markov. The origin of this formula remains unclear to us.
A. A. Markov actually used a cumbersome method of moments for deducing AN of Sn. We omit
the detailed derivation of this formula. It is straightforward via sequential conditioning: At first
E(E(Ft|Xn−1

0 )) = Fn−1(·)P (t)1, then similar conditioning on Xn−2
0 , etc.

Remark. Another proof of (3) generalizes [32] for ATF. Introduce operator family mapping real
functions h(·) on B into similar ones:

T (t)h(x) = Ex(exp [tf(x,X1)]h(X1)). (2)

We have

MGF (2)
x =EX1,X2 exp [t(f(X1) + f(X2))]h(X2)=EX1 exp [tf(X,X1)](EX2)h(X2) exp [tf(X1, X2)]=

= EX1 exp [tf(X,X1)]T (t)X1 = T 2(t)h(·).

Putting h(·) ≡ 1, we get (3) for n = 2 and arbitrary initial x. Extension to arbitrary n is by
induction.

The Perron theorem implies that MGFx →MGFπ as n→ ∞.

MGF
(n)
x is a convex function of t as a linear combination of exponentials with nonnegative

coefficients.

To simplify further exposition, we assume that all entries of P = P (0) (and therefore also of P (t))
are positive. In view of ergodicity of P = P (0), this is certainly valid for some power of P = P (0),
(see [12]), which is sufficient for proving our asymptotic results. Thus, pjk(t) = pjk exp(tf(j, k)) is
also strictly positive. The PT implies isolated maximal eigenvalue-spectral radius R(t) of P (t), 0 ≤
t < ∞ existence. Due to analicity of P (t) and the theorem of implicit functions, this unique root
R(t) of the equation

det(P (t)−RI) = 0, (3)

is an analytic function of t in a neighborhood of R(0) = 1. Attached to eigenvalue R(t) are row
eigenvector qt and column eigenvector e(t) → 1 as t → 0 infinitely smoothly depending on t, with
unit scalar product. This follows from the fact that each of e(t) → 1 and qt are the solutions of
non-degenerate linear system of equations with the same non-degenerate minor of P (t). Then

P1(t) = R(t)e(t)qt is such that R(t)−n[Pn(t) − Pn
1 (t)] := R(t)−nPn

2 (t) is strictly smaller in

matrix norm than exp (−an) for some a > 0 due to PT. Similarly, Fn(·) =
∑
F

(i)
n (·).

Remark. A standard Linear Algebra result implies existence of an invertible transformation Q =
Q(t) such that Q−1P (t)Q = Λ(t) admits the Jordan form decomposition with diagonal element R(t)
and an additional term Λ̃(t). Thus Q−1PnQ = Q−1PQQ−1PQ×···Q−1PQ admits the Jordan form
representation with diagonal Rn(t) and additional term Λ̃n(t). As a result, Pn(t) = Pn

1 (t) +Pn
2 (t).

F
(2)
n (t) is shown to be negligible in our asymptotics derivation of F (t)n, n→ ∞.

Introduce Hn(t) = n−1 logEπ exp tSn = [n−1 logF 1(t)] + o(1).

Due to analycity of r(t), H ′
n(0)/n = µn → µ which is the limiting mean of ATF. Indeed, it

equals

R′(0) + d/dt([q(t)1][πe(t)])|t=0 + d/dt[πPn
2 (t)1]|t=0. (4)

The second summand is obviously bounded, while the third one is bounded from above by

const n
∑n−1

k=1 exp (−ka) exp (n− k)a ≤ const exp (−a[n]).
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2.2. Asymptotic Normality

A normalized ATF shifted with time is obviously a stationary process converging to µ =
limESn/n as n→ ∞. [30], p. 234, shows for ASF that µ = Eπf(X1) = F ′

1(t) at t = 0.

A similar result holds for a general ATF.

To prove the weak convergence to the limiting Normal approximation (possibly singular) un-
der usual

√
n normalization for centered ATF, we evaluate the first and second derivative of its

normalized ‘reduced’ MGF F 0
1 (t) at t = 0.

The latter boils down to

d2/dt2[Rn(t)q(t)1[πe(t)])]|t=0 + o(1). (5)

Terms involving the first derivative R′(0) of the centered normalized P 0
1 (t) vanish at t = 0 due

to centering, say, F ′(0) = 0, F ′′(0) = σ2, we assume that σ > 0, see details in [30]. Only one term
remains after neglecting as in the preceding proof exponentially small terms involving P2(t):

[(π(t/
√
n)e)(π∗e(t/

√
n)) + o(1)][1 + (tσ)2/2n]n → exp ((tσ)2/2)

as n → ∞. This finishes the proof according to the classical Probability approximation theorems
since the limiting MGF is that of the centered Normal distribution with variance σ2.

Remark 1. We use further a multivariate version of the above AN theorem which proof gener-
alizes naturally the above univariate case. The principal multivariate example is the log-likelihood
ratio vs. the vector of alternatives. The covariance matrix J of the limiting Normal distribution
replaces σ2 in the above statements.

Remark 2. The most popular derivation of the CLT for MC nowadays is based on a reduction to
the more general Martingale CLT which requires rather cumbersome approximations to the Poisson
inverse-problem-like solution which is not straightforward (see e.g. [24, 32]). The proof (see [30],
pp.236–237) of the AN of normalized additive ASF functions via applying twice the L’hospital’s
rule to its MGF is pretty standard given our representation of its MGF and rather similar to that
in the IID case, see e.g. [15]. Our proof for ATF based on (3) is essentially the same.

Of some interest is that the limiting distribution under standard normalization can be singular
due to the null limiting variance.

As a consequence, in this case there is no need for
√
n normalization, and the residual distribution

is bounded.

A simple example of such anomaly for additive state function is the symmetric cyclic RW
with four states and equally likely transitions to each of two neighbors, and alternating ±function
between neighboring states. Values ±1 necessarily alternate also in time killing each other. Thus
S2n = 0, while S2n+1 = ±1 for all n and the standard 1/

√
n normalization provides the limiting

null variance.

2.3. Martingale lemmas for log-likelihood

Likelihoods Πn = Πn
i=1P (Xi|Xi−1), i = 1, are martingales with respect to σ-algebras Fn gener-

ated by MC observations Xi, i = 0, . . . , n, see [29]. Log-likelihoods Ln =
∑n

i=1 li,i−1, l(Xi, Xi−1) =
logP (Xi|Xi−1) are super-martingales as concave functions of martingales (see [29]) and thus admit
the Doob-Meyer decomposition Ln = Sn+rn with martingalemn = ln−

∑n
i=1

∑
k PXi−1,kl(k,Xi−1),

while compensators rn = sumn
i=1

∑A
k=1 kPXi−1,kl(k,Xi−1) are Fn−1-measurable (‘predictable’).

Further, exp tSn as a convex function of Sn is a submartingale for t ∈ R.
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2.4. Exponential rate of Ergodicity

Here we derive functional exponential bounds for both martingale and compensator parts of the
log-likelihoods for application in Change Point detection. 1. The functional version of the ergodic
theorem for the compensator r(Xk) is the following:

If we consider its latest k of j = n + k summands Qj , then due to a long past of length n the
underlying distribution of X1 can be taken as π.

Lemma 5.4. If k = O(log n), then absolute deviations of compensator Qj from its mean jH
exceed an arbitrarily chosen ε > 0 only a finite number of times.

Proof. Eπrj = H. Thus, due to (3) and Taylor decomposition of the exponential function, MGF
of (Qj − jH)/j is (1 +O(j−2))j = exp (−j).

The exponential Markov inequality applied twice for (Qj − jH)/j − ±ε and the Bonferroni
bound yield that the maximal absolute deviation on the interval [±O(log n)] has exponentially
small probability.

It remains to apply the Borel-Cantelli lemma to finish the proof.

S′
n =

∑n
i=1mi,i−1 is a martingale. The Doob’s maximal inequality for submartingale exp (tSn)

implies:

Pπ( max
0<k≤n

Sk ≥ ε)) ≤ Eπ exp (tS
′
n)/ exp (tε)

for every t. Now we find the appropriate t and ε.

By the MGF formula, section 5.1, Eπ exp tS
′
n = πTGn1, where Gij = Pij exp t[lij −

∑B
j=1]Pijlij ],

1 ≤ i, j ≤ B.

The mean Eπmi,i−1 ≡ 0 = EπS
′
n. Let us optimize an exponential bound for the maximal

deviations of max0<k≤n S
′
k from its mean.

We have: Hn(t) = n−1 logEπ exp tS
′
n := logRn(t) → logR(t) := H(t)

Bound optimization over parameter t.

Introduce sup(st−H(t)), L̄(t) = lim supδ→0[(L(t− δ))(It>0)+(L(t+ δ))(It<0)]. Then under ET,
it holds:

lim sup
n→∞

n−1 logPπ( max
0<k≤n

S′
k ≥ ε)) ≤ −L̄(ε).

The convex smooth Legendre transform of function H(·) is semi-continuous and positive for
sufficiently small ε if σ > 0.

The above inequality and the same inequality for −mn imply inequality for the absolute devia-
tion.

Proof is obtained via the Doob maximal martingale deviations and standard optimization in
exponential Markov inequality, see e.g. [32] or [13], p. 410.

We choose ε = k log n in application to the online Change Point detection in section 9.2-3. It
follows from the preceding development that the maximal absolute deviation of m(·) on an interval
of length k log n is O(n−q), q = L̄/k, k is chosen to guarantee only finite number of violations of the
absolute deviation bound according to the Borel-Cantelli lemma.

The functional CLT (see e.g. [3], theorem 2.11) states: if the conditional mean squared increments
of square-integrable martingale satisfying Lindeberg condition converge to a const, thenm(·) weakly
converges to a Brownian motion under appropriate normalization. Conditions above are easily
verifiable.
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3. THE LOCAL ASYMPTOTIC NORMALITY OF SCOT

Given the context tree, denote the set of SCOT root-prediction probabilities satisfying natural
normalization conditions by {θ}. Their cardinality is B×B ≤ B2 with B normalization conditions.
We prove that the corresponding family of probability distributions id regular in the LAN-sense.

The principal role in the LAN proof is played by the multivariate AN of log-likelihood ratio as
an example of multivariate ATF function (see section 4 ). For simplicity we assume that all entries
of Pθ are positive.

The Local Asymptotic Normality (or simply LAN) introduced in Le Cam (1960) is the following
decomposition of the local log-likelihood ratio

rn(u) = ln[Pθ+n−1/2u((X
n
0 ))/Pθ((X

n
0 ))],u ∈ RB = r(u) + ψn(u),

r(u) = uTλ− (1/2)uTJu,

where

λ ∼ N(0, J), J = Eπ∂r(θ)∂r(θ)
T

is the limiting covariance matrix of rn(·)’s AN approximation assumed invertible, J1 = 0B, J
−1 is

called the Fisher information matrix.

and ψn(u) converges in Pπ(X
n
0 )- probability to zero.

Proof. Applying the Taylor expansion of the second order

rn(u) = ln[Pθ+n−1/2u((X
n
0 ))/Pθ((X

n
0 ))] = In−1/2 + (1/2)IIn−1 + o(1/n),u ∈ RB,

where

I = uT∂r(θ),

II = −∂2rn(θ)uTJuT ,

III = −uTJuT∂r(θ)TJ∂r(θ).

Now, In−1/2 → uTλ weakly by CLT, section 5.2, II/n→ 0 by LLN, section 5.3, since E∂2rn(θ) =
0, and (1/2)III/n→ −(1/2)uTJu again by LLN, section 5.3.

This expansion for a univariate parameter θ is proved in [31] referring to a much more involved
exposition in [27] for the AN proof of the log-likelihood ratio in general case under standard
regularity conditions.

The uniformity of the residual ψn(u) convergence in P
(n)
θ - probability to zero can be proved by

the more elegant Lagrange-type integral representation of the second order residual in the Taylor
expansion. Namely, for all K > 0, a > 0

lim
n→∞

Pθ+n−1/2u,sup ||u||<K(|ψn(u)| > a]) = 0.

4. THE LOCAL ASYMPTOTIC MINIMAXITY OF THE LIKELIHOOD-RATIO-LIKE TESTS

We introduce the Local Asymptotic Minimaxity (LAM) and the Locally Asymptotically Most
Power (LAMP) of the likelihood based inference and of its certain approximations. It is implied
by the LAN condition outlined in section 6. Informally, the LAM in parameter estimation means
that the deviation of the estimate from the true parameter value θ∗ is asymptotically as minimal
as possible in the local minimax sense.

Let the distribution family Pθ satisfy LAN condition in θ = θ∗ with the identity Fisher infor-
mation matrix, || · || be the Euclidean norm. A function w(·) : Rp → R+ is called bowl-shaped if
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{u| w(u) ≤ a} are closed bounded symmetric convex sets for any a ≥ 0. An increasing continuous
bowl-shaped function w(·) : R+ → R+, w(0) = 0, is called a loss function.

The fundamental Hajek’s lower bound for the LAM-risk of any estimate Tn for any loss function
w(·) and δ > 0:

lim inf
n→∞

sup
||θ−θ∗||<δ

Eθw(n
1/2||Tn − θ||) ≥

∫
w(u)(2π)−1/2e−|u|2/2du,

holds. In general, the positively definite Fisher information J determines the norm in the risk
function definition.

The LAM property of the Maximum Likelihood (ML) estimate and of the Fisher score update
to ML given a qualified consistent prior estimate for θ are exposed in [27,31]. [27] shows sufficiency
of a usual consistent estimate for θ for LAM of the Fisher score update given the uniform LAN
property.

The third Le Cam’s lemma ([7, 27]) proves that the AN of a statistic under the null hypothesis
implies its AN under the alternative distribution provided contiguity and the LAN condition.

5. LOCALLY ASYMPTOTICALLY OPTIMAL TESTS

The most transparent overview of the Locally Asymptotically Most Powerful (LAMP) tests
under LAN condition for I.I.D samples is in [7]. Given LAN property, it differs insignificantly from
the one for MC in [27].

The main distinction of the LAMP approach originated in Le Cam’s works from the traditional
one, is that the ‘close’ alternatives u(n−1/2) are considered for the sample size n→ ∞. This enables
limiting positive significance level and power asymptotically and a transparent application of the
familiar testing shift theory for multivariate Normal. We now give schematic simplified overview of
this theory following [7] and shortening our notation for transparency in an obvious way.

The Neyman-Pearson lemma gives the most powerful test of significance level α against alter-
native u(n−1/2) as

rn(u) = ln[Pθ+n−1/2u((X
n
0 ))/Pθ((X

n
0 ))] > Cn,α,

with parameter Cn,α determined from equation Pn,0(rn > Cn,α) = α.

The LAN condition converts this into the asymptotic equality Cn,α = zα
√
Ju− uTJu/2 which

is equivalent to
Pn,0(rn < x) → Φ((x+ uTJu/2)/

√
uTJu).

The power of the test satisfies βn,u = Pn,u(rn,u > Cn,α) as n→ ∞ implying

Pn,u(rn < x) → Φ((x− uTJu/2)/
√
uTJu).

Thus, βn,u = Pn,u(rn > zα
√
Ju) → 1 − Φ(zα −

√
Ju) = Φ(

√
Ju − zα) which means (see e.g. [7],

(8.1.19)) that the limiting asymptotic power of our test is asymptotically maximal for every given
alternative u in view of the Neyman-Pearson lemma. Thus, our test is LAMP.

5.1. Homogeneity testing

Let us apply the preceding theory to the homogeneity of multivariate distributions of the large
strongly stationary ergodic training string T and a query string Q. We use the nonparametric test
of [21].

The first stage is estimation of the SCOT model of the string T following the algorithm in [19].
We refer to this publications for the details.
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We assume

1. The T ’s and Q’s are well-approximated by a sparse SCOT with Perfect Memory and

2. the LAN condition is fulfilled for the equivalent 1-MC over the space of contexts.

W cut the query string into K slices of the same length. Then, using the SCOT model of T
we find the log-likelihoods LQ(k) of query slices Qk and of strings Sk simulated from the training
distribution of the same size as Qk, k = 1, . . . ,K, (for constructing simulated strings, see e.g.
algorithm in [19]).

We then find log-likelihoods LQ(k) of Qk, LS(k) of Sk using the derived probability model of
the training string and the average D̄ of their difference D which approximates the likelihood
ratio statistic discussed above. The averaging over slices is used for empirical evaluation of the
log-likelihood variances since our testing homogeneity problem is completely nonparametric.

We assume though that the multivariate distributions of the training and the query strings
are contiguous. In particular, for literary applications this assumption means that both texts are
written in the same language, and admissibility of texts is the same for T and Q.

Next, due to the asymptotic normality of log-likelihood increments both for the null hypothesis
and alternative (third LeCam’s lemma), we can compute the usual empirical variance V of D̄ and
the t-statistic t as the ratio D̄/

√
V with K − 1 degrees of freedom (DF). We find K∗ from the

empirical condition that t(K∗) is maximal. Then, the p-value of homogeneity is evaluated for the
t-distribution with K∗ − 1 DF.

5.2. Comparison with GARCH on Apple log-returns

The first data set we use is the discretized in 27 bins daily log-return data of Apple Inc. starting
from January 2, 2009

By observation, we pick the volatile region (the first 450 days returns) and the quiet region (the
500th to 600th days returns) to make a comparison. We first fit the data with the GARCH(1,1)
modeled using the MATLAB(R2011a) GARCH toolbox. The P -values obtained are P1 = 0.0311
and P2 = 0.0897.

We apply SCOTlr to the same data. The homogeneity t-test between 1–450 and 500–600 (quiet
and volatile regions) trained on 1–450 shows that the t-value is −16.02058. Thus, the P -value
P < 0.00001. This P -value by SCOT is dramatically smaller than the Z-score by GARCH.

6. OFFLINE FITTING MARKOV SWITCHING MODEL

For notation simplicity we start with two-state (±1) HMM.

Introduce stationary log-likelihoods li = logP (xi|xi−1) and entropy of SCOT((±1)): h((±1)) =
limM→∞M−1E(

∑M
1 li).

6.1. HMM-SCOT model fitting

As explained before, the SCOT emissions can be reduced to a MC on the alphabet B of SCOT
contexts.

We assume that diagonal elements of all Q hidden HMM Xn transition probability matrices are
ai(l) = (1− (cil)

−1) > 0, i = 1, . . . , Q, l → ∞ and emission distributions are all different. Emission
SCOT sequences are assumed transformable to ergodic MC yi, τj < i < τj+1 over the same alphabet
B switching from a regime to alternative one at random CP time moments τj , j = 1, . . . , Q; τ0 = 0.

We estimate both emission regimes, all CPs and HMM parameters. Thus, the HMM jumps to
an alternative state after spending asymptotically exponentially distributed time with mean cil in
each state.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 19 № 1 2019



68 MALYUTOV

Fig. 2. Apple log-returns.

We modify the two settings of Change Point (CP) detection of IID sequences mi + µj with
changing mean µj , j = ±1 in [18]. In their offline method, the quadratic risk of ML as a CP
estimate does not exceed O(1) as the sample size n→ ∞ due to certain exponential bounds. Their
onlinemethod uses CP detection which is a point in the first N -interval, N = O(log n) such that the
maximal absolute deviation of mi deviation in this interval becomes comparable with the absolute
change of mean µ.

Our plan for online CP detection is to replace their IID-based inequalities with the Doob-
Meyer decomposition-based bounds for the maximal absolute deviation of both the martingale
and compensator parts separately. We use the exponential bounds obtained in section 5.4. By
implementing this program, we get the same order of quadratic risk as derived in [18] for IID case
with changing mean.

Remark. A rougher estimates of the quadratic risk in online preliminary CP-detection can be
obtained by a simpler quadratic maximum martingale deviation bound guarantying a larger window
of order O(

√
n). It would require much larger risk and sample size, thus it is omitted.

Our algorithm uses repeatedly training (section 12) the SCOT emissions in all regimes and
homogeneity testing of section 8.1.

To simplify notation, we first present our HMM-MC model with the two-state HMM (Q=2).

6.2. Algorithm road map, two-state HMM

For notation simplicity we start with the two-state HMM (A = 2, b = ±1). Our algorithm
includes:

1. Online estimation of the B × B-transition matrix P−1 of 1-MC equivalent to SCOT-emission-
regime, see Appendices 1-2.
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2. After some initial period of online continuous improving the P−1 estimate, start online detection
of the first CP τ1 in sequences of windows of size O(logl) and find a preliminary first CP estimate.
We show that its StD is O(log l).

3. The emissions from the time interval exceeding the CP estimate in (lε)a, a > 0 are used for
online continuous estimation of the alternative regime P1 and next CP τ2.

4. Using Pj , j = 0, 1, estimates we update preliminary CP online estimates with the offline MLE.
The offline MLE has StD=O(1).

Using the approach from the preceding item, we recurrently find estimates of all subsequent CPs
and improve estimates of regimes Pj , j = ±1.

5. Using all CP estimates, we get MLE of the HMM parameters.

6.3. Online CP detection

Given a 1-MC transition matrix in region 1, we carry on the CP online detection between regimes
1 and -1.

We choose such a window size that within window

P (max |m(k)| > 0.1(∆h)
∑

c(k)) < l−3, (6)

where ∆h is the entropy difference between the current and alternative regime. A lower bound
for ∆h is used if ∆h is unknown. This window size is evaluated using the maximal inequality
for absolute value of martingale |m(·)|, section 4.2. Our CP-detector is the first window when (5)
occurs.

The Borel-Cantelli lemma implies that only finite number of events (5) occur under l → ∞. As
follows from section , the window size is O(| log l|) which implies the same order of the standard
deviation of our CP detector.

6.4. Offline CP detection

Our offline segmentation stage estimates time regions with constant HMM states using homoge-
neity test for SCOT emission strings and a preliminary online segmentation. This is made fast
recurrently in parallel on a cluster of computers.

The offline CP detection follows after the online CP estimate is obtained. It starts with the SCOT
training of the string after small delay of length O(log n). The homogeneity test verifies significance
of new regime distinction from the previous one. The offline CP update of the preliminary online
CP estimate is the location of the maximum of the log-likelihood function.

For simplicity of notation assume that the initial regime is P−1 and the time of the first CP is
0. Introduce a surrogate ‘log-likelihood function’ Lz under ‘possibly false CP’ at time z and show
that maxLz is attained at a point z∗ : E(z∗)

2 = O(1).

Family Lz = I + II + III is irregular and methods of section 6 are inapplicable. First suppose
z < 0 and [±n] is included into exactly two regimes ±1; 0 belongs to the online CP interval estimate.

We have I =
∑z

−n l(X(k), X(k − 1)),

II =
∑0

z λ(X(k), X(k − 1)),

III =
∑n

0 λ(X(k), X(k − 1)),

where QX(k),X(k−1), λ(X(k), X(k−1)) are regime (+1) transition probabilities and their logarithm.

Every summand in II has mean EPλ = EP (l)− δ−1. Thus EP (L0 − Lz) ≥ zδ−1.

The case z > 0 is dealt with quite similarly resulting in equality EQ(L0 − Lz) ≥ zδ+1. Both
cross-entropies δ±1 are positive.
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The offline interval CP estimate can be updated in many ways including bification for iterative
numerical finding z∗.

It remains to bound its quadratic risk from above. The lower bound of the same order of
magnitude follows from the IID case with changing mean in [18].

Lemma 5.4 implies that the compensators for Lz are maximal at a point O(1). Convergence of
the normalized maximal absolute difference between the compensator and its mean Hn to 0 follows
from Lemma 5.4.

The functional CLT for the martingale component of log-likelihood [3], theorem 2.11, states that
the normalized martingale sequence converges weakly to the Brownian motion. Our exponential
bounds show that the maximal deviation converges to 0 also in L2.

The normalized left log-likelihood over negative times [−n, 0] was proved in section 5.2 to be
asymptotically Normal with positive left slope and variance σ2−. Similarly, the normalized right
log-likelihood of the reverted MC (which is also ergodic) over positive times has negative slope at
0 and variance σ2+. Thus, the quadratic risk of z∗ is O(1) in the weak convergence sense. The mean
square convergence can be justified in a standard way.

The SCOT is proved to be LAN which implies that the same orders of quadratic risk remain
valid when using the estimated SCOT parameters during search for CP.

6.5. HMM with finite number of states

Training SCOT for the general m states slow HMM model such that all time means spent in
states before jump are proportional to large parameter n. Main steps of training are similar to the
two HMM state case. Online change point detection is used before every jump to unknown state.

Main steps of training are similar to the two-states HMM case. Online change point detection is
used before every jump to unknown state. It is followed by the SCOT training of the string using
some delay after jump, where homogeneity is verified by homogeneity test and by the subsequent
Maximum likelihood offline change point update of the preliminary CP online estimate as above.

After all change points are safely estimated, parameters of HMM are ML-estimated based on
their multivariate statistics.

6.6. HMM parameters estimation

.

If it is only known that all mean times spent in every state before jump are proportional to large
parameter l, we can estimate all HMM transition probabilities after detecting all jump times. The
marginal HMM distribution is estimated via maximum likelihood applied to the joint CP estimates
using obvious frequencies. Namely, denoting nij = number of times i is followed by j, j = ±1, under
the stationary initial distribution, the log-likelihood is (see e.g. [2])

l(p) =
∑
ij

nij log pij ,
∑
j

pij ≡ 1,

which yields the ML estimates

p̂ij = nij/
∑
j

nij .

Thus, the average of empirical mean times before estimated jump from i to any j ̸= i, serves as
an estimate of mean time spent in i, while transition probability from i to any j ̸= i is estimated
via the last formula or simply as the frequency of jumps from i to j out of all visits to i.
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6.7. Confidence band for HMM parameters

The above estimation of the HMM parameters pij is a regular statistical problem with non-
degenerate Fisher Information matrix I(p) = Eπ∂l∂l

T /n, the offline CP estimates are independent
‘observations’ with square risks of order O(1) not affecting asymptotics of the quadratic risk of
ML-estimates. Thus asymptotically,

Cov(p̂) = [I(p)n]−1

.

For large state space, iterative methods via Fisher scores are available.

7. DISCUSSION AND ACKNOWLEDGMENTS

Our display of modeling and asymptotic inference of strongly mixing stationary sequences differs
drastically from the material presented in traditional courses on stationary processes and connects
this discipline with the classical MC-theory. Our AN derivation for ATF, exponential bound for the
martingale part of log-likelihood and its application for the online and offline CP detection seem
new.

A challenging open problem is to prove accurate asymptotic results for MC alphabet rising
simultaneously with the sample size.

Appendix 3 reviews results of [35], several revised parts of [20] are used elsewhere in the text
including a simulation prepared by P. Grosu. The author is deeply grateful to them for the long
collaboration and help.
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APPENDIX 1. PARALLEL SCOT TRAINING

This section outlines a novel parallel implementation of the algorithm similar to ’Context’ which
is created for fast processing more complex data sets including those with larger alphabet sizes.

The ESI-based criterion usually stops back-processing of the training string long before the cho-
sen horizon. All directions backwards from the root are processed in parallel making the algorithm
much faster. written using the Python programming language – builds the stochastic trees starting
from stage 1 and proceeding to the horizon stage of interest. Potential contexts having an ESI
value smaller than ϵ > 0 become contexts, and would be omitted from processing in the following
stages. Another improvement in parallelism is processing of a potential context by hashing, and
determining if it should be processed on one node of many by taking the modulo of the hash with
the total number of compute nodes. The assumption here is that there we have many (hundreds)
of compute nodes available to process a corpus into a SCOT.

ESI evaluation for possible context

The Empirical Shannon Information (ESI) is an approximation to the log-likelihood ratio statis-
tic for the root independence from all more remote symbols than a putative context..

Given a context s, let N(s) be the count of s in the source. Define a function ESI(s) as follows:

ESI(s) =
∑
i∈A

∑
j∈A

N(i.s.j) · log2
(
N(i.s.j) ·N(s)

N(i.s) ·N(s.j)

)
.

Deciding about contexts

Using a fixed maximum context length (horizon) h and a threshold ϵ > 0, we define a context
over source as follows:
It is decided that string x1, x2, . . . , xt, t ≤ h is a context, if and only if:

(a) For any i, i = 2, . . . , t such that ESI(x1, x2, . . . , xt) > ϵ,

(b) 0 < ESI(x1, x2, . . . , xt) ≤ ϵ.

Building SCOT

Using our criterion on contexts, we check all the messages coming from a source and build a
SCOT such that each context is a path starting from a leaf and ending at a son of the root. A SCOT
is built in a step-wise manner starting with depth 1 and ending at the desired context length.

The stochastic component of SCOT - prediction distribution of symbols in the root - is to be
specified at every leaf. This is performed by the following equation, where s is a leaf:

P (i|s) = N(s.i)/N(s),where i ∈ A.

These algorithms to build up the contexts are always started with Stage 1. At the end of each stage
the contexts are collected from all the nodes and stored into one file, which will be used as an input
for the following stage. This writing of the files by each node is equivalent to the Map phase of the
MapReduce algorithm, while the collection is the Reduce phase of it. In order to build the final
SCOT file to a specific stage, all the contexts to the desired stage are combined and the horizon is
consolidated with all the non-contexts of only the specific stage.

In making the SCOT construction parallel, the choice for parallelism are substrings which will be
tested for being contexts via the RissanenESI function. Such potential contexts would require the
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prefix and suffix counts to be populated. To parallelize the processing of contexts, a hash function
was implemented to construct a numerical value out of the characters forming the context string,
which subsequently is modulo with the number of nodes (total nodes variable). This way each
compute node will process a portion of the potential contexts, which can be many in latter stages
of a SCOT. Our hash algorithm for strings is standard.

The large prime number 99971 is used in how the data is actually stored to load-balance the retrieval
of sequence counts. Each sequence thus would be stored in a list (chained) in the bucket denoted
by the modulo – because of possible collisions.

An annotated computer code with a detailed description of the algorithm is in [20], section 8.

APPENDIX 2. SIMULATION OF CP DETECTION (J. FENG)

We consider a HMM with states 0 and 1: starting with HMM state 0, we use the SCOT model
2 from [28], the transition probability to state 1 is 0.001. Increasing SCOT under state 0: zk = k
(that means the probability of changing from state k-1 to state k is 1, starting from the initial state
a0 = 0) Decreasing SCOT under HMM state 1: the probability of changing from state k to k-1 is
1. Uniformly distributed random numbers uk with density f(x)=1, and range [0,1].

Model 2 (i), [28]

Fig. 3. The scheme of Model 2(i) is displayed

This model does not lead to undesirable periodicity of the MC over contexts because our Change
Point precedes the first hit of the boundary.

Xn = Xn−1 + 1 with probability 0.9, if Xn−1 = Xn−2 + 1 and Xn−1 ̸= ±l;
Xn is defined anti-symmetrically to the above, if Xn−1 = Xn−2 − 1 and Xn−1 ̸= ±l.
Here is the print out for the observations yk = uk ∗ 0.99 + zk ∗ 0.01:
In simulation of the online change point detection the online CP is found by doing the following:

1. Under the assumption that the sequence stays in HMM state 0 for the whole time, we compute
the log likelihood of observations yk.

2. Compute function F1(k)= sum of the log likelihood up to time k

3. The above function F1(k) should be increasing.

4. Under the assumption that sequence stay in state 1 all the time, we compute the log likelihood
of observations yk.

5. Compute function F2(k)= sun of the log likelihood from time k to the end time using the
inverse Markov chain. 6. The above function F2(k) should be increasing as time decrease.

7. The point where F2(k) and F1(k) intersect is the CP ML-estimate.
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Fig. 4. Simulated HMM-SCOT model.

Case 1:
Set up:

i) Let U be the random variable with discrete uniform distribution.
i.e. P(U=j/10)=1/100 for j=1,2,...,100.

ii) Let st indicate the state of Hidden Markov Model at time t (with only two state 0, 1).

The transition probability of this Hidden Markov Model is:

P (s1 = 0) = 1, P (st = 1|st−1 = 0) = 0.001, P (st = 1|st−1 = 1) = 1.

So the Hidden Markov Model will start with state 0 and then has one change point after some
time (the state changes from 0 to 1) and will never go back to state 0 again.

Denote CP as the least t such that st = 1.

iii) Define increasing SCOT under state 0 in Hidden Markov Model:

Let zt act under the rule of increasing SCOT if st = 0, that is:

P (z1 = 1) = 1, P (zt = k|zt−1 = k − 1) = 1.

Then P (zt = t) = 1.

iv) Define decreasing SCOT under state 1 in Hidden Markov Model:

Let zt act under the rule of decreasing SCOT if st = 1, that is:
P (zt = k|zt−1 = k + 1) = 1.

v) Summarizing ii) to iv), we have:

zt = 1, if t = 1,

zt = t, if 1 < t < CP ,

zt = 2CP − t− 2, if t ≥ CP .

vi) Define yt = 0.99Ut + (0.01)zt.

For simulation, we simulate yt by simulating Ut , Hidden Markov Model and SCOTs. Then we
want to use the Change point detection to find the change point by using the data we get for yt s
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and see how close the estimation is to the real change point CP. In this simulation, the sample size
will be 1000 (i.e. t = 1, ..., 1000 ).

Online change point detection:
a) Calculating the log likelihood of each yt:
The distribution of the CP:

P (CP = i) = 0.99(i−2) × 0.01 for 1 < i ≤ t,

P (CP > t) = 0.99t.

The distribution of zt given the value of CP:

P (z1 = |CP = i) = 1,

P (zt = 2CP − t− 2|CP = i) = 1 for 1 < i ≤ t,

P (zt = t|CP > t) = 1 for i > t.

The probability of getting y1, y2, ..., yt:
P (y1, y2, ..., yt|CP = i)
=

∑
u1,...,ut
z1,...,zt

P (0.99um + 0.01zm = ym ∀m = 1, ..., t|CP = i)

P (y1, y2, ..., yt) =∑t
i=2 P (y1, y2, ..., yt|CP = i)P (CP = i) + P (y1, y2, ..., yt|CP > t)P (CP > t)

Then the log-likelihood of y1, y2, ..., yt is lt = logP (y1, y2, ..., yt).
b) Average log-likelihood :
Choose the window size of 10 points, then the average log-likelihood from the window yt, . . . , y(t+9)

is
¯(lt) = 1/10

∑9
k=0 l(t+k).

c) Calculating the trend Lt of the data:
We use Least square estimate for model lk = ak + b with data l1, l2, ..., lt then Lt = a.
d) getting critical point:
Let C denote the critical point, by using the first hundred datas, we have first 100 Lt

′s.
Define V (t) = | ¯(lt)− Lt| Then let C = 1.1 max

t≤100
V (t)

e) Online change point estimate:
The estimator is the least t such that | ¯(lt)− Lt| > C.

Simulation result
Picture 1:
True change point is 389. C = 17.768 The least t such that V (t) > 17.768 is 383

Offline change point detection:
we use maximum likelihood estimator as our estimation:
Define L(θ) = L(y1, ..., yt; θ) = P (y1, ..., yt|CP = θ) where P (y1, ..., yt|CP = θ) can be deduced
from similar procedure introduced in online change point detection. Then the maximum likelihood
estimator θ0 is:
θ0 = arg max

1≤θ≥1000
L(θ)

Simulation result:
Picture 2:
True change point is 389. Offline change point estimater θ0 = 389

Case 1: Set up i) Let U be the random variable with discrete uniform distribution. i.e. P(U=j/10)=1/100
for j=1,2,...,100.

ii) Let st indicate the state of Hidden Markov Model at time t (with only two state 0, 1).
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The transition probability of this Hidden Markov Model is:

P (s1 = 0) = 1, P (st = 1|st−1 = 0) = 0.001, P (st = 1|st−1 = 1) = 1.

So the Hidden Markov Model will start with state 0 and then has one change point after some
time (the state changes from 0 to 1) and will never go back to state 0 again.

Denote CP as the least t such that st = 1.

iii) Define increasing SCOT under state 0 in Hidden Markov Model:

Let zt act under the rule of increasing SCOT if st = 0, that is:

P (z1 = 1) = 1, P (zt = k|zt−1 = k − 1) = 1.

Then P (zt = t) = 1.

iv) Define decreasing SCOT under state 1 in Hidden Markov Model:

Let zt act under the rule of decreasing SCOT if st = 1, that is:
P (zt = k|zt−1 = k + 1) = 1.

v) Summarizing ii) to iv), we have:

zt = 1, if t = 1,

zt = t, if 1 < t < CP ,

zt = 2CP − t− 2, if t ≥ CP .

vi) Define yt = 0.99Ut + (0.01)zt.

For simulation, we simulate yt by simulating Ut , Hidden Markov Model and SCOTs. Then we
want to use the Change point detection to find the change point by using the data we get for yt s
and see how close the estimation is to the real change point CP.

Online change point detection:
a) Calculating the log likelihood of each yt:
The distribution of the CP:

P (CP = i) = 0.99(i−2) × 0.01 for 1 < i ≤ t,

P (CP > t) = 0.99t.

The distribution of zt given the value of CP:

P (z1 = |CP = i) = 1,

P (zt = 2CP − t− 2|CP = i) = 1 for 1 < i ≤ t,

P (zt = t|CP > t) = 1 for i > t.

Then: P (zt = x) =
∑∞

i=2[P (zt = x|CP = i)P (CP = i)]

=
∑t

i=2[P (zt = x|CP = i)P (CP = i)] + P (zt = x|CP > i)P (CP > i).
The probability of yt equal to the actual observation c:

P (yt = c) =
∑100

j=1[P (U = j/10)P (zt = 100c− j/10 ∗ 99)].
Then the log-likelihood of yt is lt = logP (yt = c).

b) Average log-likelihood : Choose the window size of 10 points, then the average log-likelihood
from the window yt, . . . , y(t+9) is

¯(lt) = 1/10
∑9

k=0 l(t+k).

Calculating the trend L of the data: We use Least square estimate for model yt = at + b then
L = a.

Change point estimate: Our CP estimate is the least t such that | ¯(lt)− kL| > 0.1.
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