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Abstract—Statistical decoders are one of the most robust decoders for positional modulations
like FSK and PPM. As we show in this work they are applicable to any (unknown) channels
that have non-zero distance between received signals. This makes it possible to use statistical
decoders in NOMA random access communication systems with bad Channel State Information.
In this work we consider the problem of data transmission over unknown memoryless channels.
To the author’s knowledge this problem was not studied in literature till now. We propose
repetition Kautz-Singleton codes and statistical decoders as a solution to this problem.
To estimate the performance of the proposed solution we propose a lower and an upper asymp-
totic bounds on error rate for statistical decoder. These bounds are evaluated for Kolmogorov-
Smirnov goodness-of-fit criteria and compared to a computer simulation. The lower bound
seems to be close to the simulation result. The upper bound is not that close to the simulation
result but it still holds. To the author’s knowledge this is the first technique to derive bounds
on error rate for any distance-based statistical decoder.
These bounds for the Kolmogorov-Smirnov goodness-of-fit criterion also show that the error
rate should be inversely proportional to the square root of code distance. Other goodness-of-fit
criteria might yield asymptotically better results.
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1. INTRODUCTION

Special decoders for coded FSK (Frequency Shift Keying) constructions intended have being
developed for a long time (one of the first might be [1]). In 2008 Zyablov and Osipov [2] have
described a multiple access system with each user transmitting an FSK symbol with randomly
selected frequencies under the name DHA FH OFDMA (Dynamic Hopset Allocation Frequency
Hopping Orthogonal Frequency Division Multiple Access). No coding was defined in that paper
though. In 2012 upper bounds on erroneous decoding [3] and denial [4] probabilities of coded DHA
FH OFDMA in presence of multitone jamming.

The first statistical decoder was proposed in [1] although it didn’t mention it was in fact using
Mann-Whitney U test as a goodness-of-fit criteria. However, it had bounds on error rate for this
specific statistical decoder.

The general framework of statistical decoders was first presented in 2012 in [5,6]. Two goodness-
of-fit criteria were used in these works: Kolmogorov-Smirnov criterion and Mann-Whitney U test
(also known as Wilcoxon rank-sum test). These results were later expanded and published in [7].
Statistical decoders based on other two-sample goodness-of-fit criteria were studied in [8]. Statistical
decoders based on one-sample goodness-of-fit criteria were introduced in [9]. All these works have
the same decoder scheme but different goodness-of-fit criteria.

1 The reported study was funded by RFBR according to the research projects № 18–37–00322 and № 18–07–01409.
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In [10,11] a reliability metric was introduced for statistical decoder based on Mann-Whitney U
test, but the likelihood values were not deduced. A simplified metric was proposed in [12].

In this work we will be studying a slightly different statistical decoders that were described earlier
in [13]. These decoders are much easier to reason about as they can output correct likelihoods.
They can also be used in binary channels unlike the ones described earlier.

We must also mention other kinds of universal decoders to show the difference between them
and the one under consideration. There are a lot of works on universal decoding [14, 15, 16] where
decoders with error correction performance close to maximum likelihood decoder are proposed.
Unfortunately all of them deal with parametric channels, i.e. the set of all channels (or channel
parameters) is countable. In this work the set of all channels is uncountable, i.e. we include all
channels for which an inequality (similar to nonzero capacity) holds.

Another similar problem is the problem of mismatched decoding [17]. The main difference in
the problem statement is that in mismatched decoding encoder knows the channel model and can
select the codebook based on this knowledge. In this work we use a fixed codebook (parameterized
by its length) independent on the channel model.

2. CHANNEL MODEL

Let us define a general channel model:

x→ y : {0, 1} → [0, 1]

Pr{yt < y|xt = 1} = F (y) Pr{yt < y|xt = 0} = y

where yt is channel output at time t, xt is channel input at time t, F (y) is a cumulative distribution
function (c.d.f.). All received symbols are statistically independent. F (y) is not known either at the
receiver or the transmitter. In this system the conventional decoding doesn’t apply as we cannot
compute

LLR = log
Pr{y|x = 1}
Pr{y|x = 0}

. (1)

So alternative decoders such as statistical decoders are necessary.

In this work we assume that the transmitted symbols are coded and that only two codewords
are possible: x0 = {0, 1, 0, 1, . . . , 0, 1} and x1 = {1, 0, 1, 0, . . . , 1, 0}. Let us denote the length of
these codewords by 2T . Therefore, each codeword has T zeros and T ones and Hamming distance
between them is 2T . These two codewords can be regarded as Kautz-Singleton codewords with an
outer repetition code.

Remark 1. This channel is based on the generalized channel mentioned in remark in [13]. In
this work we give that channel a mathematical description. The difference is that in [13] receiver
has measured Pr{y|x = 0} with the help of pilot symbols while in this work we suppose that the
receiver has perfect knowledge of this probability.

3. STATISTICAL DECODER

Let yj = {y2t+j}Tt=1. Then instead of computing (1) we will compute

lim
ε→0

1

ε
Pr
{
|g(yj)− g(ξ)| < ε

∣∣∣ ξ ∼ UT[0,1]
}

(2)

for some g(y). U[0,1] denotes a uniform distribution on [0, 1]. In case of statistical decoders we

choose g(y) to be a statistic of a goodness-of-fit criterion. For most criteria g
(
{y2t+j}Tt=1

)
tends
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to infinity for x 6= xj . Let us define the statistical decoder output LLRs as

LLR = lim
ε→0

log
Pr
{
|g(ξ)− g(y1)| < ε

∣∣∣x = x1, ξ ∼ UT[0,1]
}

Pr
{
|g(ξ)− g(y0)| < ε

∣∣∣x = x0, ξ ∼ UT[0,1]
}

This value is known to decoder as the distribution of a goodness-of-fit statistic converges to a
known distribution when sample size (code length) goes to infinity.

To compute error rate of this decoder rate we have to compute

Perr = Pr
{
g(y0) > g(y1)

∣∣∣x = x1

}
. (3)

Unfortunately the distribution of goodness-of-fit statistic in the mismatched case is not widely
researched in literature. Therefore, we propose bounds for this distribution for one class of criteria:
ones based on a distance between c.d.f.

Remark 2. It is worth noting the symmetries of this decoder. Most of goodness-of-fit criteria
don’t change if any strictly monotonic transform is applied to their input. But using more popular
Kullback-Leibler divergence (in coding theory mostly known as a product of likelihoods) breaks
this symmetry for continuous distributions. The ratio of these divergences also breaks it.

4. DISTANCE-BASED CRITERIA

Let us define empirical c.d.f. as

F̃i(y) =
1

2T
|{t : y2t+i < y}| .

In this work we only consider goodness-of-fit criteria with statistic of form

g (yi) = ‖F̃i(y)− y‖,

where ‖F (y)‖ is some norm of function F (y). We will often skip the argument y in later equations.
This c.d.f. is only valid for large samples, although there are some good estimates for samples of
small size [18].

Now we can rewrite (3) as

Perr = Pr
{
‖F̃0(y)− y‖ > ‖F̃1(y)− y‖

}
= Pr

{
‖F̃0 − y‖ > ‖F̃1 − F + F − y‖

} (4)

Let us derive lower bound from (4) using a simple inequality:∣∣∣ ‖x‖ − ‖y‖ ∣∣∣ ≤ ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (5)

Perr ≥ Pr
{
‖F̃0 − y‖ > ‖F̃1 − F‖+ ‖F − y‖

}
= Pr {ξ1 − ξ0 > ‖F (y)− y‖} ,

(6)

where ξi are i.i.d. random variables with distribution defined by the goodness-of-fit criterion used
(for large samples). This bound can be easily computed for any channel.

Perr ≥ 1−
∫ +∞

0
pξ(ξ)Fξ (‖F (y)− y‖+ ξ) dξ,
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The bound (6) also gives a metric of channel that defines error rate of statistical decoder: ‖F (y)−
y‖. It depends on the function norm and therefore the goodness-of-fit criterion, but it doesn’t
depend on the code length and distance. The part of this bound defines how error rate decreases
with length: in the same fashion as ξ. For example, for Kolmogorov-Smirnov criterion Fξ(x) =√
nD(x) for sufficiently large n, where D(x) doesn’t depend on sample size n [19]. Therefore, for

Kolmogorov-Smirnov statistical decoder Perr = Ω(T−0.5).

Now let us use the other part of (5) to derive the upper bound:

Perr ≤ Pr
{
‖F̃0 − y‖ >

∣∣∣ ‖F̃1 − F‖+ ‖F − y‖
∣∣∣}

= Pr {ξ0 > ξ1 − ‖F − y‖, ξ0 > −ξ1 + ‖F − y‖}
= Pr {ξ1 − ξ0 < ‖F − y‖, ξ0 + ξ1 > ‖F − y‖}
= Pr {‖F − y‖ − ξ0 < ξ1 < ‖F − y‖+ ξ0}

This probability can be computed as

Perr ≤
∫ +∞

0
pξ(ξ0)

(
Fξ(d+ ξ0)− Fξ(d− ξ0)

)
dξ0,

where d = ‖F − y‖ and pξ(x) = d
dxFξ(x) is the p.d.f. defined by the chosen goodness-of-fit crite-

rion. Most of the conclusions for the lower bound also apply for the upper bound. Therefore, for
Kolmogorov-Smirnov statistical decoder Perr = O(T−0.5). Combining it with the lower bound we
get Perr = Θ(T−0.5).

5. SIMULATION

To test the proposed bound a computer simulation was made. The parameters were selected
from [13]. As it is impossible to study the decoder performance for a non-parametric class of
channels we have limited our simulation to a single class of channels. Let describe the channel
model

yt =
∣∣∣xtαt + (δt

√
Pstrong +

√
Pweak)ηt

∣∣∣2,
where αt, ηt are i.i.d. complex standard normal variables CN (0, 1); Pstrong, Pweak are the powers of
interference and noise respectively and δt ∼ B(1, p) is a Bernoulli random variable. This channel
approximates DHA FH OFDMA channel [2] with Rayleigh fading with collision probability p.
Channel input xt were described earlier. The following parameter values were chosen:

– p = 0.5, T = 16,
– Pstrong = −20 dB,
– Kolmogorov-Smirnov criterion was used in decoder.

Kolmogorov-Smirnov criterion is defined as follows:

DT = sup |F̃ (y)− y|

Pr

{
(6TDT + 1)2

18T
< ξ

}
= K

(√
ξ

2

)
+O

(
1

T

)

K(ξ) =

∞∑
k=−∞

(−1)ke−2k
2ξ2
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From the second equation we can conclude that the error rate should be inversely proportional
to the square root of length (or the square root of Hamming distance if we consider codes other than
the repetition codes). Though this result might seem very weak it is the only bound for unknown
memoryless channels without feedback.

Figure 1 shows the simulation result. The lower bound is very close to the simulation results,
but the upper bound is not. Nevertheless, both bounds hold.
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Figure 1. Error Rate and Bounds.

6. FUTURE WORK

The proposed bounds could be improved for the decoder based on the Kolmogorov-Smirnov
criterion by using the distribution of one-sided difference between c.d.f.

Generalization to non-binary case and non-repetition codes requires careful handling of depen-
dent random variables but should be possible with manipulations of function norms similar to the
ones presented in this work.

7. CONCLUSION

In this paper we consider data transmission over unknown memoryless channels without feed-
back. We are not aware of any other papers on this problem so this work lacks any comparisons
with other bounds. We propose repetition Kautz-Singleton codes and statistical decoders and study
their error correction performance as a function of distance between transition probability functions
and distance between codewords.

In this work we propose lower and upper asymptotic bounds for statistical decoder and binary
repetition code. Computer simulation to test these bounds was performed for Kolmogorov-Smirnov
criterion. It shows that the lower bound is close to actual code error rate. The upper bound just
holds.
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