= МАТЕМАТИЧЕСКИЕ МОДЕЛИ, ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ =

Интеграция стохастических сетей Петри и онтологии для управления взаимодействием человека и робота в задачах совместной сборки 1

М. А. Шереужев*, Д. И. Арабаджиев*, С. Б. Галина**, В. И. Венец**

*МГТУ "СТАНКИН", Москва, Россия

**Институт проблем управления им. В.А. Трапезникова РАН, Москва, Россия Поступила в редколлегию 10.08.2025 г. Принята 10.10.2025 г.

Аннотация—Представлена интегрированная система управления, объединяющая стохастические сети Петри с онтологическим представлением знаний для повышения безопасности и эффективности совместной сборки "человек - робот". Целью является наделение роботизированной ячейки способностью рассуждать о неопределённых действиях человека, соблюдая при этом семантические ограничения задачи. Метод связывает онтологические концепции, отношения и индивиды с местами, переходами и фишками стохастической сети Петри, формируя единую модель состояний, управляемую вероятностными скоростями срабатывания переходов и логическими аксиомами. Проведены формальный анализ достижимости для выявления тупиков и опасных состояний, синтез оптимальной политики распределения задач, максимизирующей суммарную награду (баланс скорость/безопасность), а также программная реализация в симуляторе Webots. Испытания выполнены для сценария pick-and-place с коллаборативным шестикоординатным манипулятором и оператором-человеком (100 итераций). Предложенный контроллер сократил среднее время сборки на 27% и число опасных сближений на 42% по сравнению с базовой временно-триггерной стратегией, полностью устранив тупиковые состояния, выявленные в графе достижимости. Результаты показывают, что семантико-вероятностная сеть Петри может служить основой для следующего поколения коллаборативных роботов, способных адаптироваться к стохастическому поведению человека с минимальным ущербом для безопасности и производительности.

КЛЮЧЕВЫЕ СЛОВА: стохастическая сеть Петри, управление на основе онтологии, взаимодействие человека и робота, совместная сборка.

DOI: 10.53921/18195822 2025 25 3 272

1. ВВЕДЕНИЕ

Коллаборативные роботы стали ключевой технологией современной промышленности, позволяя людям и машинам работать в одном рабочем пространстве. В отличие от классических промышленных манипуляторов, изолированных ограждениями, коботы непосредственно взаимодействуют с оператором, сочетая точность и повторяемость робота с гибкостью и эвристическими навыками человека [1, 2]. Эффективное сотрудничество требует интеграццию интеллектуальных систем управления, способных учитывать неопределённость человеческих действий и одновременно обеспечивать безопасность и производительность [3].

Стохастические сети Петри (ССП) зарекомендовали себя как удобный инструмент моделирования параллельных процессов с вероятностной динамикой [4], что делает их естественным

¹ Работа первых двух авторов выполнена в МГТУ "СТАНКИН" при поддержке Министерства науки и высшего образования Российской Федерации (проект FSFS-2024-0012.)

выбором для описания недетерминированного поведения оператора. Онтологии, в свою очередь, предоставляют формализованное структурированное представление предметной области, позволяя семантически выводить факты об объектах, действиях и их взаимоотношениях [5]. Несмотря на то что оба подхода активно применяются в робототехнике, их совместное использование в коллаборативных ячейках пока исследовано слабо.

Настоящая работа содержит следующие основные результаты:

- 1. Формальная схема интеграции ССП с онтологическим представлением знаний;
- 2. Математическое описание динамики интегрированной системы управления;
- 3. Методы анализа достижимости с учётом семантических ограничений;
- 4. Экспериментальное исследование, демонстрирующее применение предложенного подхода в задаче совместной сборки.

2. СВЯЗАННЫЕ ИССЛЕДОВАНИЯ

ССП широко применяются в робототехнике для моделирования параллельных процессов и учёта неопределённости. Zhou [6] использовал ССП для планирования роботов с неопределёнными длительностями операций. Costelha и Lima [7] описали построение планов выполнения задач робота и их мониторинг на основе сетей Петри. В контексте коллаборативного взаимодействия Wang [8] моделировал вероятностное поведение человека и его влияние на совместные операции.

Онтологии зарекомендовали себя как мощный инструмент представления знаний в робототехнике. Рабочая группа IEEE RAS разработала базовые онтологии для роботов [9]. Tenorth и Beetz [10] предложили систему KnowRob для наделения роботов когнитивными навыками. В контексте коллаборативного взаимодействия Lemaignan [11] разработал структуру для планирования задач с учетом интересов человека с использованием онтологических знаний.

Попыток объединить два подхода пока немного. В работе [12] представлена концептуальная схема совмещения сетей Петри и онтологий для сервисных роботов, но не затронута стохастика, критически важная для коллаборативного взаимодейтсвия. Olivares-Alarcos [13] обсуждает перспективы объединения вероятностного вывода с онтологиями, но без формальной матмодели. Настоящая работа устраняет этот пробел, предложив комплексную интеграцию, ориентированную на задачу совместной сборки. Ряд недавних исследований также стимулировали наше направление. Так, в работе [14] авторы продемонстрировали, что кодирование знаний о сборке на языке предметной области ускоряет восстановление после ошибок, подтверждая, что "богатые" лексически модели, предоставляемые онтологией, жизненно важны для надежного выполнения задач. Авторы [15] использовали индукцию грамматики для обновления конечных контроллеров в режиме онлайн. Их стратегия калибровки на основе данных указывает на то, как журналы наблюдений могут автоматически настраивать частоту срабатывания в нашей стохастической сети Петри.

Guo и Dimarogonas [16] показали, что локальные ограничения в логике LTL позволяют безопасно переконфигурировать последовательности действий/работ без полного перепланирования — аналогичная потребность возникает при изменении онтологии. Обзор авторов [17] подчёркивает нехватку фреймворков, совмещающих вероятностную динамику и высокоуровневую семантику — именно эту нишу заполняет предлагаемая интеграция ССП-онтология.

Lesire и Tessier [18] уделили особое внимание онлайн—обнаружению конфликтов, когда действия человека отклоняются от плана, в таких случаях функциональность легко сопоставляется с некорректными разметками в нашей сети. Таксономия взаимодействия человека и робота авторов [19] предлагает качественные режимы, которые могут быть формализованы в виде классов онтологий, оттачивая семантические рассуждения. Наконец, авторы работы

[20] смоделировали неопределенность с помощью вероятностных гибридных автоматов. Объединение их обработки в непрерывном режиме с нашей ССП с дискретными событиями было бы следующим естественным шагом на пути к единой гибридной платформе для совместной сборки.

3. ТЕОРЕТИЧЕСКАЯ ОСНОВА

3.1. Формализация стохастических сетей Петри

Стохастическая сеть Петри формально определяется как кортеж $SPN = (P, T, F, W, M_0, \Lambda)$, где:

- $-P = p_1, p_2, \dots, p_n$ конечное множество мест;
- $-T = t_1, t_2, \dots, t_m$ конечное множество переходов;
- $-F \subseteq (P \times T) \cup (T \times P)$ множество направленных дуг;
- $-W: F \to \mathbb{N}^+$ весовая функция;
- $-M_0: P \to \mathbb{N}$ − начальная маркировка;
- $-\Lambda: T \to \mathbb{R}^+$ это функция скорости срабатывания для переходов.

Динамика ССП определяется включенными переходами и частотой их срабатывания. Переход t разрешен при маркировке M если $\forall p \in P : (p,t) \in F \Rightarrow M(p) \geq W(p,t)$. Когда активированный переход t срабатывает, он создает новую маркировку M' такую, что:

$$M'(p) = M(p) - W(p,t) + W(t,p) \quad \forall p \in P.$$

Вероятность запуска разрешенного перехода t за небольшой промежуток времени Δt приблизительно равна $\Lambda(t)\cdot \Delta t$, когда $\Delta t\to 0$.

3.2. Онтологическое представление

Онтология формально определяется как кортеж, O = (C, R, A, I, Ax) где:

- С набор понятий в предметной области;
- $-R \subset C \times C$ совокупность отношений между понятиями;
- А набор аксиом, определяющих ограничения;
- -I совокупность индивидов (экземпляров понятий);
- -Ax набор утверждающих аксиом (фактов об отдельных индивидах).

Семантика онтологии определяется интерпретацией $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ где $\Delta^{\mathcal{I}}$ область интерпретации и $\cdot^{\mathcal{I}}$ – это функция интерпретации, которая сопоставляет каждое понятие $c \in C$ с подмножеством $c^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ и каждое отношение $r \in R$ с подмножеством $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

3.3. Механизм интеграции

Мы определяем интеграцию между онтологией и ССП как функцию отображения:

$$\Phi: O \times SPN \to CS$$
,

где CS представляет пространство состояний системы управления. Это отображение можно разложить на:

- 1. Сопоставление концепции с местом: $\Phi_C: C \to 2^P$
- 2. Отображение отношения к переходу: $\Phi_R : R \to 2^T$
- 3. Сопоставление индивидуума с токеном: $\Phi_I: I \to M|M: P \to \mathbb{N}$

Это отображение устанавливает двунаправленную связь между онтологическими концепциями и элементами ССП, позволяя семантическую интерпретацию состояния и структуры ССП.

3.4. Представление пространства состояний

Интегрированная система управления математически представляется в виде:

$$S = (X, U, Y, f, g, h),$$

где:

- $-X = \{M \mid M \colon P \to \mathbb{N}\} \times S_O$ пространство состояний (где S_O состояние онтологии);
- U множество управляющих воздействий;
- Y множество наблюдаемых выходов;
- $-f: X \times U \to X$ функция перехода состояний;
- $-g: X \times U \to \mathbb{R}^+$ функция интенсивностей переходов;
- $-h: X \to Y$ функция выхода.

 Φ ункция перехода f включает в себя оба компонента:

- семантику срабатывания ССП: $f_{SPN}(M,t) = M'$, M'(p) = M(p) W(p,t) + W(t,p);
- онтологический вывод: $f_O(S_O) = S_O'$ (обновлённое состояние через правила вывода).

3.5. Вероятностная динамика

Для сценариев взаимодействия человека и робота неопределенность учитывается с помощью распределения вероятностей перехода из состояния t в t+1:

$$\pi(x_{t+1}|x_t, u_t) = P(X_{t+1} = x_{t+1}|X_t = x_t, U_t = u_t).$$

Это распределение вероятностей определяется частотой работы и структурой ССП и ограничено онтологическими правилами.

3.6. Модель наблюдения

Модель наблюдения учитывает погрешности датчиков и частичную наблюдаемость:

$$\psi(y_t|x_t) = P(Y_t = y_t|X_t = x_t).$$

3.7. Политика контроля

Оптимальная политика управления $\mu^*: X \to U$ сопоставляет текущие состояния с действиями, которые оптимизируют функцию вознаграждения R(x,u), что обеспечивает баланс безопасности, эффективности и качества совместной работы:

$$\mu^* = \arg\max_{\mu} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R(x_t, \mu(x_t)) \right],$$

где $\gamma \in [0,1)$ – коэффициент дисконтирования, определяющий приоритет сиюминутных вознаграждений перед будущими.

3.8. Определение достижимости

Для ССП с начальной маркировкой M_0 , маркировка M достижима, если существует последовательность срабатываения переходов $\sigma = t_1, t_2, \dots, t_k$ такая, что $M_0 \stackrel{\sigma}{\to} M$. Множество всех достижимых меток формирует множество достижимости $R(M_0)$. При включении онтологии O, анализ достижимости распространяется на:

$$R_{ont}(M_0, O) = (M, S_O)|M_0 \xrightarrow{\sigma} M$$
 где S_O соответствует O .

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ ТОМ 25 № 3 2025

3.9. Вычисление матрицы достижимости

Матрица достижимости RM, где RM[i,j]=1, если состояние j доступно из состояния i, может быть вычислена с использованием алгоритма Флойда–Уоршелла:

$$RM^{k}[i,j] = RM^{k-1}[i,j] \vee (RM^{k-1}[i,k] \wedge RM^{k-1}[k,j]).$$

3.10. Вероятностный анализ достижимости

Для случайных систем мы вычисляем вероятность достижения состояния j из состояния i:

$$P(i \to j) = \sum_{\sigma \in \Sigma_{i,j}} P(\sigma),$$

где $\Sigma_{i,j}$ – набор всех возможных путей от i к j, и вероятность наличия определенной последовательности $\sigma=t_1,t_2,\ldots,t_k$ вычисляется как:

$$P(\sigma) = \prod_{i=1}^{k} \frac{\Lambda(t_i)}{\sum_{j \in enabled(M_{i-1})} \Lambda(t_j)}.$$

3.11. Семантическая проверка

Для каждого достижимого состояния мы проверяем соответствие онтологическим ограничениям, используя функцию Valid(M,O) = true для разметки M и онтологии O. Семантически допустимый набор достижимости равен:

$$R_{valid}(M_0, O) = M \in R(M_0)|Valid(M, O) = true.$$

4. ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ СОВМЕСТНОЙ СБОРКИ

4.1. Описание задачи

Далее применим формализм из предыдущего пункта к экспериментальной установке приведём отображение (п. 3.3) и запишем модель наблюдения ψ (п. 3.6). В типовой коллаборативной ячейке, содержащей одного робота с шестью степенями свободы, который разделяет рабочее пространство с человеком-оператором, цикл сборки разворачивается в виде плавной, тесно связанной последовательности операций. Сначала оператор вручную выбирает базовую механическую деталь, выравнивает ее на позиционере и сигнализирует о готовности. Затем робот поворачивается к ближайшему стеллажу, берет необходимые ручные инструменты и раскладывает их на эргономично удобной высоте. Имея в своём распоряжении необходимые инструменты, человек и робот работают бок о бок, закрепляя, запрессовывая или заклепывая компоненты, причем каждая сторона выполняет свою часть задач в соответствующей зоне, не мешая другой. По завершении совместной операции робот переключается на процедуру контроля: он переориентирует заготовку под калиброванную камеру, выполняет быструю проверку размеров и проверяет крутящий момент или глубину вставки. Наконец, оператор выполняет визуальное одобрение и регистрирует продукт как завершенный, прежде чем освободить рабочее место для следующего цикла. Такой порядок действий: подготовка персонала, роботизированное обращение с инструментом, совместная сборка, автоматизированный контроль и авторизация человеком, стал стандартом де-факто на предприятиях автомобилестроения, электроники и потребительских товаров, поскольку обеспечивает баланс безопасности, производительности и эргономичной нагрузки.

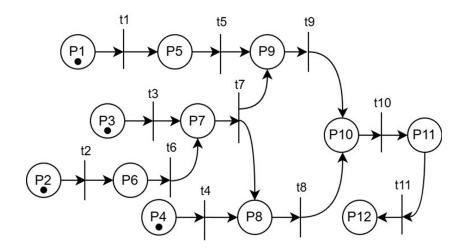
Онтология для задачи сборки включает в себя следующие элементы:

- Понятия: Человек, Робот, Компонент, Сборочная станция, Инструмент, Операция по сборке;
- Отношения: hasPosition, isHolding, isAssembling, requiresTool, hasSkill, hasState;
- Аксиомы безопасности:
 - $HumanSafetyZone(z) \supset \neg (RobotPosition(z) \land HumanPosition(z) \land HighSpeedOperation(z))$
 - $ComponentAssembly(c) \supset (HumanHolding(c) \oplus RobotHolding(c))$
 - $ToolUse(t) \supset (HumanOperating(t) \oplus RobotOperating(t))$
- Аксиомы для задач:
 - $AssemblyOperation(o) \land requiresSkill(o, s) \land hasSkill(Human, s) \supset assignedTo(o, Human)$
 - $AssemblyOperation(o) \land requiresForce(o, f) \land (f > HumanMaxForce) \supset assignedTo(o, Robot)$

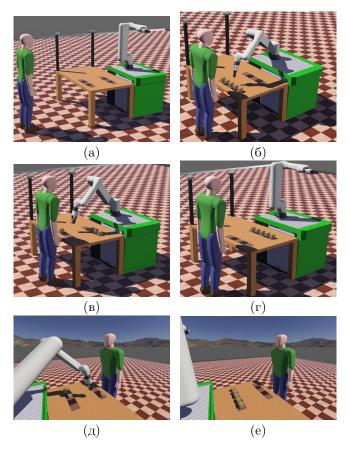
4.2. ССП-модель

Модель ССП для задачи сборки показана на рисунке 1 и включает в себя: Места:

```
-p_1: Человек, готов к сборке;
```


- p_2 : Робот готов к сборке;
- $-p_3$: Доступен базовый компонент;
- p_4 : Доступные инструменты;
- $-p_5$: Человек на сборочном посту;
- p_6 : Робот на сборочном посту;
- $-p_7$: Человек держит компонент;
- $-p_8$: Робот использует захват;
- p_9 : Выполняется сборка;
- $-p_{10}$: Автоматическая валидация;
- $-p_{11}$: Проверка человеком;
- p_{12} : Сборка завершена;
- p₁₃: Сборка отклонена.

Переходы:


- $-t_1$: Человек приближается к сборочной станции (λ_1) ;
- $-t_2$: Робот приближается к сборочной станции (λ_2);
- $-t_3$: Человек берёт базовый компонент (λ_3);
- $-t_4$: Робот получает инструмент (λ_4) ;
- $-t_5$: Начало сборки (λ_5) ;
- $-t_6$: Человек просит о помощи (λ_6) ;
- $-t_7$: Робот оказывает помощь (λ_7) ;
- $-t_8$: Полная сборочная операция (λ_8);
- $-t_9$: Робот инспектирует сборку (λ_9) ;
- $-t_{10}$: Человек проверяет сборку (λ_{10});
- $-t_{11}$: Сборка отклонена (λ_{11}) ;
- t_{12} : Сборка одобрена (λ_{12}) .

Представленные модель соотносится с онтологией следующим образом:

- $-p_5$ "Человек на посту" \leftrightarrow has Position(Human, Station) из онтологии; токен появляется при детекции скелета оператора в зоне поста;
- $-p_6$ "Робот на посту" \leftrightarrow hasPosition(Robot, Station) (кинетический триггер планировщика);
- p_7 "Человек держит компонент" $\leftrightarrow isHolding(Human, part_i)$ (на изображении камеры маска руки и маска кубика пересекаются);
- $-p_8$ "Робот использует захват" $\leftrightarrow isOperating(Robot, gripper);$
- $-p_9$ "Сборка идёт" $\leftrightarrow isAssembling(Human, Robot, part_i);$
- $-t_5$ "Начало сборки" $\leftrightarrow (hasSkill(Human, s) \land requiresTool(o, tool)) \Rightarrow assignedTo(o, Human/Robot).$

Рис. 1. ССП, описывающая процесс сборки с начальной маркировкой.

Рис. 2. Моделирование ячейки, управляемой ССП: а) исходное положение (человек держит деталь); б) робот и человек готовы к работе; в) сборка продолжается, робот переносит куб; г) сборка завершена (этап проверки); д) вид с камеры процесса сборки; е) сборка завершена, проверка камерой.

4.3. Моделирование в среде Webots

Моделирование выполнено в виртуальном полигоне Webots, где коллаборативный манипулятор с шестью степенями свободы работает за небольшим рабочим стол совместно с гуманоидным аватаром оператора. Все траекторные контроллеры и управляющий автомат верхнего уровня реализованы на Python; каждое дискретное решение подчиняется логике срабатывания стохастической сети Петри, описанной ранее. Для ясности и воспроизводимости задачу сборки упростили до перемещения пяти кубиков: аватар укладывает их в общее рабочее пространство, а робот переносит в предназначенную нишу. Состояние рабочей зоны отслеживает одна боковая RGB-камера, охватывающая весь стол. Каждый кадр обрабатывается в реальном времени с помощью OpenCV: пороговая сегментация в HSV-пространстве и морфологическая фильтрация выделяют кубики, тогда как силуэт человека извлекается облегчённой моделью OpenPose. В качестве альтернативы можно было бы использовать ArUco-метки или детектор YOLOv8 без изменения проверенной структуры управления. Каждое наблюдение y_t преобразуем в онтологические факты Ax_t (например, $AssemblyPart(cube_i)$, $HumanHoldinq(cube_i)$), после чего $\psi(y_t|x_t)$ трактуем как вероятность корректной детекции (оценка по частоте ошибок). Функция выхода $h(x_t)$ публикует высоты-уровни для управляющего автомата (например, "готов/занят/требует помощи"), которые напрямую определяют выбор политики $\mu^*(x_t)$. Это реализует связку модели наблюдения пункт 3.6 с реальным потоком сенсорных данных. На рис. 2 показана последовательность работы коллаборативной ячейки и соответствующее изображение камеры во время сборки. Кадры (a-e) соответствуют смене маркировок M в $p_7 \to p_9 \to p_{10} \to p_{12}$, факты Ax_t формируются из детекций и валидируются аксиомами безопасности.

Для представленного сценария используем отображение $\Phi = (\Phi_C, \Phi_R, \Phi_I)$:

- Φ_C (Человек Готов) $\to p_1, \Phi_C$ (Робот Готов) $\to p_2, \Phi_C$ (Сборка Идёт) $\to p_3, ...;$
- $-\Phi_R(hasPosition, isHolding, requiresTool) \rightarrow (t_1, t_2, t_3, ...);$
- $-\Phi_{I}$ (индивид кубик_i) \to токен в p_{3} при детекции в кадре.

Тем самым интегрированное состояние $X=(M,S_O)$ (п. 3.4) в каждой такте обновляется как:

$$M' = f_{SPN}(M, t_k), S'_O = f_O(S_O, Ax_k),$$

где Ax_k - утверждения, сформированные на основе показаний сенсорного блока. Скорости $g \equiv \lambda(t)$ определяются из логов работы системы, а политика μ^* определяет действие на основе (M, S_O) .

4.4. Результаты анализа достижимости

На интегрированной модели выполнен анализ достижимости для выявления потенциальных проблем и проверки свойств безопасности. Таблица 1 содержит ключевые показатели анализа.

Свойство	Математическое	Интерпретация результата
	выражение	
Завершение сборки	$P_{\text{complete}} = 0.92$	Высокая вероятность успешного завершения
Нарушение безопасности	$P_{\text{violation}} = 0.03$	Низкая вероятность нарушения безопасности
Возникновение тупиковой ситуации	$P_{\rm deadlock} = 0.05$	Низкая вероятность тупиковой ситуации
Ожидаемое время выполнения, мин	$\mathbb{E}[t] = 7.3$	Разумная продолжительность задачи

Таблица 1. Ключевые показатели анализа

В представленной таблице $P_{complete}$: доля эпизодов, закончившихся маркировкой p_{12} ; $P_{violation}$: доля эпизодов, где Ax_t противоречит аксиомам безопасности; $P_{deadblock}$: вероятность того, что во время эпизода система попадёт в тупиковое состояние; E(t) среднее время достижения маркировки p_{12} .

Анализ показал возможность опасной ситуации, когда человек и робот одновременно пытаются получить доступ к одной и той же области рабочего пространства. Включив онтологические ограничения, эти небезопасные состояния были исключены из множества допустимых.

4.5. Оценка политики управления

На основе результатов анализа достижимости синтезирована оптимальная политика π^* , динамически распределяющая задачи между человеком и роботом в зависимости от их доступности и компетенций. В 100 симуляционных испытаниях политика сократила среднее время выполнения цикла на 27% и число критически опасных событий на 42% по сравнению с базовой стратегией без онтологического вывода.

5. ОБСУЖДЕНИЕ

Интеграция стохастических сетей Петри с управляемым онтологией набором знаний предоставляет значительные преимущества для взаимодействия человека и робота. Прежде всего, онтология предоставляет машинно-интерпретируемое описание семантики задач, атрибутов объектов и возможностей агентов, обеспечивая высокоуровневую логику, которую чистые стохастические модели предоставить не могут. Это семантическое обоснование определяет, какие действия допустимы, какие ресурсы доступны и какие правила безопасности действуют, тем самым устраняя неоднозначные состояния во время выполнения. В то же время, стохастические сети Петри позволяют моделировать случайные события и недетерминированность человеческих действий, предоставляя системе обоснованный способ оценки риска столкновений, периодов простоя и задержек восстановления. Поскольку эти два формализма объединены, классический анализ достижимости становится выполнимым, так что свойства безопасности могут быть проверены заранее, а не обнаружены через дорогостоящий метод проб и ошибок. Не менее важно, что база знаний остается отделенной от структуры сети, позволяя инженерам адаптировать ячейку к новому профилю оператора или варианту продукта путем редактирования или расширения онтологии, оставляя базовый скелет ССП неизменным. Тем не менее, интегрированная схема не лишена недостатков. Размер графа достижимости растет комбинаторно с количеством мест ССП и базой знаний онтологии, и ЭВМ реальной сборочной линии может исчерпать память решателя. Даже когда граф помещается в память, калибровка вероятностей срабатывания переходов, связанных с человеком, требует обширных данных захвата движения или журналов, которыми мелкие производства обладают редко. Дополнительное узкое место заключается в самой инженерии онтологий: захват всех соответствующих ресурсов, блокировок безопасности и путей исключений для масштабирования линий производства требует экспертов предметной области и влечет трудозатраты, которые могут превысить ожидаемый прирост производительности. Забегая вперед, несколько направлений могли бы смягчить эти недостатки и расширить область применения метода. Управляемая данными идентификация – от байесовского вывода до глубокого обратного обучения с подкреплением – могла бы выводить как значения вероятностей срабатывания переходов, так и аксиомы онтологии непосредственно из журналов демонстраций, сокращая усилия по ручному моделированию. Параллельно, иерархическая декомпозиция пары ССП-онтология на подсети уровня станций и уровня ячеек сохранила бы пространство состояний управляемым, сохраняя при этом сквозную верификацию. Современные производственные линии также требуют поддержки нескольких операторов, работающих в смены, поэтому внедрение отношений доступа на основе ролей в онтологию могло бы обобщить формализм для командного сотрудничества людей. Наконец, адаптация в реальном времени онлайн, где вероятности переходов и веса политики обновляются на лету в ответ на физиологические или визуальные подсказки, обещает превратить контроллер из предварительно запрограммированного супервизора в отзывчивую рекомендательную систему.

6. ЗАКЛЮЧЕНИЕ

В данной статье представлена новая интеграция стохастических сетей Петри и онтологий для управления совместными роботизированными системами в сценариях взаимодействия человека и робота. Предлагаемый подход сочетает возможности вероятностного моделирования ССП с возможностями семантического обоснования онтологий, обеспечивая более эффективное и безопасное сотрудничество человека и робота. Математическое обоснование обеспечивает прочную основу для анализа и проверки свойств системы, тогда как практическое исследование продемонстрировало преимущества интегрированного подхода на примере реалистичной задачи сборки. Будущая работа будет сосредоточена на устранении выявленных ограничений и изучении предложенных направлений исследований для дальнейшего расширения возможностей применения роботизированных коллаборативных систем.

СПИСОК ЛИТЕРАТУРЫ

- 1. Villani V., Pini F., Leali F., Secchi C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. *Mechatronics*, 2018, vol. 55, pp. 248–266. DOI: 10.1016/j.mechatronics.2018.02.009.
- 2. Michalos G., Makris S., Spiliotopoulos J., Misios I., Tsarouchi P., Chryssolouris G. ROBO-PARTNER: Seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. *Procedia CIRP*, 2014, vol. 23, pp. 71–76. DOI: 10.1016/j.procir.2014.10.079.
- 3. Ajoudani A., Zanchettin A. M., Ivaldi S., Albu-Schäffer A., Kosuge K., Khatib O. Progress and prospects of the human–robot collaboration. *Autonomous Robots*, 2018, vol. 42, no. 5, pp. 957–975. DOI: 10.1007/s10514-017-9677-2.
- 4. Marsan M. A., Balbo G., Conte G., Donatelli S., Franceschinis G. *Modelling with Generalized Stochastic Petri Nets*. Chichester: John Wiley & Sons, 1995. ISBN 978-0471930594.
- 5. Staab S., Studer R. (eds.) *Handbook on Ontologies*. 2nd ed. Berlin: Springer, 2010. DOI: 10.1007/978-3-540-92673-3.
- 6. Zhou M., DiCesare F. Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Boston: Springer, 1993. DOI: 10.1007/978-1-4615-3126-5.
- Costelha H., Lima P. Robot task planning environment: A Petri net-based approach. In: Autonomous Robotic Systems. Eds. H. I. Christensen, O. Khatib. Berlin: Springer, 2012, pp. 79–91. DOI: 10.1007/978-3-642-27482-4 6.
- 8. Wang Y., Wu H., Zhang M., Lin Z. Stochastic Petri net-based modeling and analysis of human-robot collaborative assembly systems with random task execution times. *IEEE Access*, 2019, vol. 7, pp. 110 882–110 893. DOI: 10.1109/ACCESS.2019.2934208.
- 9. Schlenoff C., Prestes E., Madhavan R. *et al.* An IEEE standard ontology for robotics and automation. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS). Vilamoura—Algarve (Portugal), 2012, pp. 1337–1342. DOI: 10.1109/IROS.2012.6385773.
- 10. Tenorth M., Beetz M. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. *International Journal of Robotics Research*, 2013, vol. 32, no. 5, pp. 566–590. DOI: 10.1177/0278364913481635.

- 11. Lemaignan S., Warnier M., Sisbot E. A., Clodic A., Alami R. Artificial cognition for social human–robot interaction: An implementation. *Artificial Intelligence*, 2017, vol. 247, pp. 45–69. DOI: 10.1016/j.artint.2016.07.002.
- 12. Ramírez A. L., Rodríguez R. A., Carballido J. A. Combining ontologies and Petri nets for designing active medical devices. *Expert Systems with Applications*, 2016, vol. 64, pp. 384–396. DOI: 10.1016/j.eswa.2016.08.039.
- 13. Olivares-Alarcos A., Beßler D., Khamis A. et al. A review and comparison of ontology-based approaches to robot autonomy. The Knowledge Engineering Review, 2019, vol. 34, e29. DOI: 10.1017/S0269888919000237.
- 14. Kootbally Z., Schlenoff C., Lawler C., Kramer T., Gupta S. K. Towards robust assembly with knowledge representation for the planning domain definition language (PDDL). *Robotics and Computer-Integrated Manufacturing*, 2015, vol. 33, pp. 42–55. DOI: 10.1016/j.rcim.2014.08.006.
- 15. Fu J., Tanner H. G., Heinz J., Chandlee J. Adaptive symbolic control for finite-state transition systems with grammatical inference. *IEEE Transactions on Automatic Control*, 2014, vol. 59, no. 2, pp. 505–511. DOI: 10.1109/TAC.2013.2272885.
- 16. Guo S., Dimarogonas D. V. Multi-agent plan reconfiguration under local LTL specifications. International Journal of Robotics Research, 2015, vol. 34, no. 2, pp. 218–235. DOI: 10.1177/0278364914546174.
- 17. Luckcuck M., Farrell M., Dennis L. A., Dixon C., Fisher M. Formal specification and verification of autonomous robotic systems: A survey. *ACM Computing Surveys*, 2019, vol. 52, no. 5, Art. 100. DOI: 10.1145/3342355.
- 18. Lesire C., Tessier C. Estimation and conflict detection in human controlled systems. In: Proc. Int. Workshop on Principles of Diagnosis (DX). Monterey (CA), 2005, pp. 111–116.
- 19. Yanco H. A., Drury J. L. Classifying human-robot interaction: An updated taxonomy. In: Proc. IEEE Int. Conf. Systems, Man and Cybernetics (SMC). The Hague (Netherlands), 2004, vol. 3, pp. 2841–2846. DOI: 10.1109/ICSMC.2004.1400763.
- 20. Bobrow J. E., McDermott J., Kak A. C., Sridhar S. A formalism for the modeling, simulation, and control of systems with uncertainty. *IEEE Transactions on Robotics*, 2019, vol. 35, no. 3, pp. 773–786.

Integration of Stochastic Petri Nets and Ontologies for Human-Robot Interaction Control Systems in Collaborative Assembly Tasks

M. A. Shereuzhev, D. I. Arabadzhiev, S. B. Galina, V. I. Venets

This study introduces an integrated control framework that combines stochastic Petri nets with ontology-based knowledge representation to improve safety and efficiency during collaborative human—robot assembly. The objective is to endow a robotic coworker with the ability to reason about uncertain human actions while respecting semantic task constraints. The method maps ontology concepts, relations and individuals to places, transitions and tokens of a stochastic Petri net, yielding a unified state-space model governed by probabilistic firing rates and logical axioms. Procedures include formal reachability analysis for deadlock and hazard detection, synthesis of an optimal task-allocation policy that maximises a cumulative reward balancing speed and safety, and implementation of the entire model in the Webots simulator. Experimental investigations were carried out on a pick-and-place assembly scenario involving a six-degree-of-freedom manipulator and a human operator across one hundred simulation trials. The proposed controller achieved a twenty-seven percent reduction in average assembly time and a forty-two percent decrease in unsafe proximity events relative to a time-triggered baseline, while eliminating all deadlock states identified in the reachability graph. The results demonstrate that the semantic—probabilistic integration provides a viable foundation for next-generation collaborative robot controllers capable of adapting to variable human behaviour without compromising safety or productivity.

KEYWORDS: stochastic Petri nets, ontology-based control, human–robot interaction, collaborative assembly.